
Math 6702, Assignment 8

Laplace’s Equation on a Rectangle

1. (Exam 1 Problem 7) Consider again the boundary value problem for Laplace’s equation
on the rectangle U = [0, L] × [0, M ] where L and M are positive numbers.

{

∆u = 0,
u(x, 0) = 0, u(L, y) = 0, u(x, M) = x(x − L), u(0, y) = 0

(1)

(a) Find a function g ∈ C∞([0, L] × [0, M ]) such that

g∣
∣

∂U\{y=M}

≡ 0 and g(x, M) = g3(x) = x(x − L).

Hint: Take a convex combination of g1 ≡ 0 and g3.

(b) Let w = u − g and write down the boundary value problem for Poisson’s equation
satisfied by w.

(c) Consider the Fourier basis

{φjk}
∞

j,k=1
with φjk(x, y) = sin

jπx

L
sin

kπy

M
.

Expand −∆g in a Fourier series

−∆g =

∞
∑

j,k=1

ajkφjk.

(d) Let wjk solve
{

∆w = φjk,
w∣

∣

∂U

≡ 0. (2)

Hint: Compute ∆φjk.

(e) Take the specific values L = 1 and M = 0.5 and plot enough terms of

u(x, y) = w(x, y) + g(x, y) where w =
∞

∑

j,k=1

ajkwjk

to convince yourself (and me) that you have obtained a series solution for the
problem. (Postscript/Note: The plots might look a little better with L = 1 and
M = 3. Or you could do L = 2 and M = 5 for example, but these kinds of aspect
ratios may be easier for the visualization.)



Weak Derivatives

2. Let u ∈ W 1(U) have weak (partial) derivatives gj for j = 1, 2, . . . , n. Assume U0

is an open subset of U on which u has a weak (or classical) derivative Dju. Show
Dju(x) = gj(x) for x ∈ U0. Hint: Use the fundamental lemma of the calculus of
variations.

Solution: Let φ ∈ C∞

c (U0). Then we may extend φ to φ̄ : U → R by setting

φ̄(x) =

{

φ(x), x ∈ U0

0, x ∈ U\U0.

Note that φ̄ ∈ C∞

c (U). By the definition of weak derivative

∫

U

gjφ̄ = −

∫

U

uφ̄′.

Since φ ∈ C∞

c (U0), this implies

∫

U0

gjφ = −

∫

U0

uφ′. (3)

Also, since Dju is a derivative on U0, we know

∫

U0

Djuφ = −

∫

U0

uφ′. (4)

We either get (4) by definition if Dju is a weak derivative or by integration by parts
if Dju is a classical derivative on U0. Alternatively, we can quote the fact that a
classical derivative is a weak derivative. In any case, subtracting (3) from (4) we
have

∫

U0

[Dju − gj]φ = 0 for all φ ∈ C∞

c (U0).

By the fundamental theorem of the calculus of variations, we conclude Dju = gj ∈
L1

loc(U0).

Actually, the statement should be corrected slightly to read: Dju(x) = gj(x) for
almost every x ∈ U0 or Dju = gj ∈ L1

loc(U0) which amounts to the same thing.
If gj may be assumed continuous and Dju may be assumed continuous, of course,
then you get pointwise equality at all points x ∈ U0 by the simple version of the
fundamental lemma.



3. Consider the modified tent function T ∈ Lip[0, L] given by

T (x) =

{

bx/a, 0 ≤ x ≤ a
b(L − x)/(L − a) + ǫ, a ≤ x ≤ L

where ǫ > 0. Show T /∈ W 1(0, L). Hints: Assume T has a weak derivative g and get a
contradiction. Use the previous problem.

§4.11 Change of Variables

4. (4.11.1) Consdider the second order PDE

∂2u

∂x2
− 5

∂2u

∂x∂y
+ 6

∂2u

∂y2
= 0

for u = u(x, y) defined on a domain U in the plane R2.

(a) Use the change of variables
{

s = y + 2x
t = y + 3x

to define a function w(s, t) = u(x(s, t), y(s, t)).

(b) Assume u ∈ C2(U) satisfies the PDE above, and find a PDE satisfied by w.

(c) Solve the PDE satisfied by w.

(d) Solve the original second order PDE for u.

§5.4 Change of Variables in Integrals

5. (5.4.1) Let Ba(0) = {(x, y) ∈ R2 : x2+y2 < a2} model a physical disk of constant density
δ. Use polar coordinates to find the following:

(a) The centroid of the first quadrant of the disk.

(b) The moment of inertia of the disk about the diameter.

6. (5.4.2) Consider the disk {(x, y) ∈ R2 : (x − a)2 + y2 < a2}.

(a) Find the equation of the boundary of this disk in polar coordinates.

(b) Use polar coordinates to compute the model mass of this disk if the density is
modeled by δ(x, y) =

√

x2 + y2.

7. (5.4.20) Use the change of variables
{

x = (r − s)/2
y = (r + s)/2

to evaluate the iterated integral
∫

1/2

0

∫

1−x

x

(

x − y

x + y

)

2

dydx.

Hints: Sketch the region of integration and the new region of integration in the r, s-plane.


