
Assignment 7:
Partial Differential Equations (heat equation)

Due Wednesday, March 8, 2023

John McCuan

February 28, 2023

Problem 1 (A problem in geometric ODEs) This is the second in a series of prob-
lems designed to help you produce a picture of an interesting curve whose (signed)
curvature is given by arclength along the curve (and review what you (might) need
to know about ODEs).

Remember Problem 1 of Assignment 6. For this problem, we consider a function
f : (−a, a) → R for some a > 0 with f ∈ C2(−a, a) satisfying the initial conditions

f(0) = 0 and f ′(0) = 0.

The arclength of the graph G = {(x, f(x)) : x ∈ (−a, a)} of f measured positive
along G from (0, 0) to (x, f(x)) for x > 0 and negative along G from (0, 0) to (x, f(x))
for x < 0 can be expressed in terms of an integral obtained as a limit of the length of
polygonal paths as follows: Let x > 0 and consider a partition

P = {x0 = 0, x1, x2, . . . , xk = x}

with x0 < x1 < x2 < . . . < xk. For each such partition consider the polygonal path

Γ =

k
⋃

j=1

{(1− t)(xj−1, f(xj−1)) + t(xj , f(xj)) : 0 ≤ t ≤ 1}

(a) Draw a picture of the polygonal path Γ.
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(b) Express the length of the polygonal path as a sum

k
∑

j=1

length(Γj)

where Γj = {(1− t)(xj−1, f(xj−1))+ t(xj , f(xj)) : 0 ≤ t ≤ 1} is the line segment
connecting ((xj−1, f(xj−1)) to (xj, f(xj)) for j = 1, 2, . . . , k.

(c) Introduce appropriate difference quotients in order to obtain the arclength

s(x) = lim
‖P‖→0}

k
∑

j=1

length(Γj)

along Γ described above as an integral for x ≥ 0.

(d) Modify your discussion of part (c) above to conclude that the same integral gives
the negative arclength measured along Γ from (0, 0) to (x, f(x)) when x < 0.

Problem 2 (A problem in geometric ODEs) This is the third in a series of problems
designed to help you produce a picture of an interesting curve whose (signed) cur-
vature is given by arclength along the curve (and review what you (might) need to
know about ODEs).

Assume the signed curvature k = k(x) of the graph G of f considered in Problem 1
above is equal to the signed arclength s(x).

(a) Find a first order system of ordinary differential equations satisfied by the three
real valued functions f = f(x), s = s(x), and w = f ′(x).

(b) Combine the system you found in part (a) of this problem with the initial condi-
tions from Problem 1 above, and find a numerical approximation of the solution
of the resulting initial value problem (IVP). (Use mathematical software like
Mathematica (NDSolve) or Matlab (ODE45).)

(c) Plot your numerical solution/approximation on some interval (−a, a). (Use math-
ematical software like Mathematica or Matlab.)

(d) What interesting thing do you find? For example, what is the maximum value
of the endpoint a you can use? What is

lim
xրa

f(x)?
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Problem 3 (A problem in geometric ODEs) This is the fourth in a series of prob-
lems designed to help you produce a picture of an interesting curve whose (signed)
curvature is given by arclength along the curve (and review what you (might) need
to know about ODEs).

Use the existence and uniqueness theorem for ODEs to show the solution f = f(x)
you approximated in Problem 2 above has the following properties

(a) f exists and is unique on some maximal interval (−a, a) for some a > 0.

(b) The solution f is odd: f(−x) = −f(x).

(c) f is increasing and bounded on (−a, a).

(d) There is a finite height gradient blow-up at x = a:

lim
xրa

f(x) < ∞ and lim
xրa

f ′(x) = +∞.

Solution: Here we start with the system of ODEs






f ′′

(1 + f ′2)3/2
= s, f(0) = f ′(0) = 0

s′ =
√

1 + f ′2, s(0) = 0
(1)

or the equivalent first order system






f ′ = w, f(0) = 0
w′ = s(1 + w2)3/2), w(0) = 0

s′ =
√
1 + w2, s(0) = 0.

(2)

It will be observed that the autonomous vector field

v = v(f, w, s) = (w, s(1 + w2)3/2),
√
1 + w2)

defining this system satisfies v ∈ C∞(R3 → R
3). Thus, we certainly have local

existence and uniqueness at every initial point (x0, f(x0), w(x0), s(x0)) ∈ R
4. In

particular, there exists some ǫ > 0 for which (2) has a well-defined solution (f, w, s)
defined on some interval (−ǫ, ǫ).

For a moment let ǫ be any positive number for which (2) has a solution (f, w, s) ∈
C1(−ǫ, ǫ). Note that this implies f ∈ C2(−ǫ, ǫ) with (f, s) a solution of (1) on (−ǫ, ǫ)
and

f ′′

(1 + f ′2)3/2)
=

(

f ′

√

1 + f ′2

)′

= s. (3)
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Furthermore, the last equation in (2) tells us s′ ≥ 1 so

s(x) ≥ x ≥ 0 for 0 ≤ x < ǫ with strict inequality when x > 0.

Applying this observation to the second equation, we find w = f ′ is increasing with

w′(x) = f ′′(x) ≥ 0 for 0 ≤ x < ǫ with strict inequality when x > 0

and

w(x) = f ′(x) ≥ 0 for 0 ≤ x < ǫ with strict inequality when x > 0.

Finally, applying this last observation to the first equation we have

f(x) ≥ 0 for 0 ≤ x < ǫ with strict inequality when x > 0.

It follows that each of the limits

lim
xրǫ

f(x), lim
xրǫ

f ′(x), lim
xրǫ

f ′′(x), and lim
xրǫ

s(x),

exists as an extended real number in (0,∞]. If w = f ′(x) has a finite limit

lim
xրǫ

f ′(x) = m ∈ R,

then f(x) ≤ mx and s ≤
√
1 +m2 also have finite limits. Therefore, one may take

f(ǫ) = lim
xրǫ

f(x), w(ǫ) = lim
xրǫ

f ′(x), and s(ǫ) = lim
xրǫ

s(x)

as initial conditions for the ODEs in (2) and find for some δ > 0 a extension of the
solution to some larger interval (−ǫ, ǫ+ δ). In this case also, we may check that the
functions

f̃(x) =

{

f(x), 0 ≤ x < x+ δ
−f(−x), −δ − ǫ < x ≤ 0,

w̃(x) =

{

w(x), 0 ≤ x < x+ δ
w(−x), −δ − ǫ < x ≤ 0,

and

s̃(x) =

{

s(x), 0 ≤ x < ǫ+ δ
−s(−x), −δ − ǫ < x ≤ 0
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are each in C1(−δ − ǫ, ǫ + δ) and together give a solution, and hence the unique
solution, of (2) on the entire symmetric interval (−δ − ǫ, ǫ+ δ).

Note finally, that since this modified solution (f̃ , w̃, s̃) has f̃ and s̃ odd and w̃
even, and this is the unique solution, the original solution must also have component
functions with these symmetries.

Letting
a = sup{ǫ > 0 : (2) has a unique solution on (−ǫ, ǫ).}

we obtain a unique maximal interval (−a, a) on which (2) has a unique solution. This
solution satisfies f(−x) = −f(x), w(−x) = w(x), and s(−x) = −s(x).

(a) It remains to show a < ∞. To this end, let us return to a particular ǫ > 0 for
which (2) has a unique solution (f, w, s) on the interval (−ǫ, ǫ). By restricting
to a smaller interval if necessary, we may assume limxրǫ f

′(x) < ∞ so that
(f, w, s) ∈ C1[−ǫ, ǫ] and

f(ǫ) = lim
xրǫ

f(x), f ′(ǫ) = lim
xրǫ

f ′(x), and s(ǫ) = lim
xրǫ

s(x)

with each of these values finite and positive. This situation is indicated in
Figure 1. I wish to compare to a tangent (osculating) circle to the graph of f

Figure 1: A local regular solution at x = 0 and a comparison circle.

at the point (ǫ, f(ǫ)). I will only consider the portion of this circle to the right
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of x = ǫ as indicated in Figure 1. The radius of this circle is r = 1/s(ǫ) > 0,
and the portion of interest is the graph of a function g : [ǫ, x2] → R of the form

g(x) = f(ǫ) +
√

r2 − (ǫ− x0)2 −
√

r2 − (x− x0)2

where x0 is the x coordinate of the center. We have then

g′(x) =
x− x0

√

r2 − (x− x0)2

and want

g′(ǫ) =
ǫ− x0

√

r2 − (ǫ− x0)2
= f ′(ǫ).

This implies (ǫ− x0)
2 = f ′(ǫ)2[r2 − (ǫ− x0)

2] or

x0 = ǫ− rf ′(ǫ)
√

1 + f ′(ǫ)2
.

We then have g increasing on [ǫ, x2] = [ǫ, x0 + r] with g ∈ C∞[ǫ, x2) ∩ C0[ǫ, x2],

g(x2) = f(ǫ) +
√

r2 − (ǫ− x0)2 = f(ǫ) +
r

√

1 + f ′(ǫ)2

and
g′′

(1 + g′2)3/2
≡ 1

r
= s(ǫ).

I record a simplified formula for g:

g(x) = f(ǫ) +
r

√

1 + f ′(ǫ)2
−

√

√

√

√r2 −
(

x− ǫ+
rf ′(ǫ)

√

1 + f ′(ǫ)2

)2

.

Assuming (2) has a solution on the interval [ǫ, ǫ+ δ) for some δ > 0, notice that

s(x) = s(ǫ) +

∫ x

ǫ

√

1 + w(t)2 dt ≥ s(ǫ) + (x− ǫ) ≥ s(ǫ)

for ǫ ≤ x < ǫ+ δ with strict inequality when x > ǫ.

Therefore, if f, g ∈ C1[ǫ, ǫ+ δ), then

s(x) =
f ′′

(1 + f ′2)3/2
≥ g′′

(1 + g′2)3/2
≡ s(ǫ) (4)
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with strict inequality for x > ǫ. Rewriting this inequality using the identity (3),
we get

d

dx

(

f ′

√

1 + f ′2

)

≥ d

dx

(

g′
√

1 + g′2

)

,

and integrating
f ′

√

1 + f ′2
≥ g′
√

1 + g′2
.

Finally, this means

f ′(x) ≥ g′(x) and f ′′(x) ≥ g′′(x). (5)

All these inequalities are strict for x > ǫ. Having noted above that the maximal
interval [ǫ, a) for the existence of f , if a is finite must be determined by the
condition

lim
xրa

f ′(x) = +∞,

and noting that
lim
xրx2

g′(x) = +∞,

we conclude from (5) that a ≤ x2. In particular, a < ∞ as was to be shown. It
would also be nice to know a < x2 = x0 + r. We will establish this below.

(b) We have already shown the solution is odd.

(c) We have established in the solution of part (a) above that there is some a ≤ x2

for which f ∈ C2[ǫ, a), but

lim
xրa

f ′(x) = +∞.

On this common interval [ǫ, a) where f, g ∈ C2[ǫ, a) both functions are increasing
and have inverses:

g−1 : [f(ǫ), g(a)] → [ǫ, a] and f−1 :

[

f(ǫ, lim
xրa

f(x)

)

→ [f(ǫ), a).

In fact, g has an inverse g−1 : [f(ǫ), g(x2)] → [ǫ, x2]. At the moment, we still
only know a ≤ x2. The functions f−1 and g−1 moreover satisfy

g−1 ∈ C2[f(ǫ), g(a)] and f−1 ∈ C2

[

f(ǫ), lim
xրa

f(x)

)
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and have graphs with associated signed curvatures

−

d2g−1

dy2
[

1 +

(

dg−1

dy

)2
]3/2

= s(ǫ) and −

d2f−1

dy2
[

1 +

(

df−1

dy

)2
]3/2

= s ◦ f−1.

Furthermore, the inequality (4) holds in these coordinates so that

−

d2g−1

dy2
[

1 +

(

dg−1

dy

)2
]3/2

≤ −

d2f−1

dy2
[

1 +

(

df−1

dy

)2
]3/2

with strict inequality for y > f(ǫ) on some common interval [f(ǫ), y1) with both
f−1 and g−1 defined and twice differentiable. We know, more precisely, that

y1 = min

{

g(x2), lim
xրa

f(x)

}

though we can sharpen this characterization later. Just as we used (4) to obtain
(5) above, the same reasoning gives

0 ≤ df−1

dy
≤ dg−1

dy
and

d2f−1

dy2
≤ d2g−1

dy2
< 0 (6)

for f(ǫ) ≤ y < y1 and with strict inequality for f(ǫ) < y < y1.

If we assume y1 = g(x2), then

lim
yրy1

df−1

dy
≤ lim

yրy1

dg−1

dy
= 0.

Therefore,

lim
yրy1

df−1

dy
= 0

and
lim
xրa

f ′(x) = ∞ with lim
xրx1

f(x) ≥ g(x2).
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If
lim
xրx1

f(x) > g(x2),

then
df−1

dy
(g(x2)) <

dg−1

dy
(g(x2)) = 0

which is a contradiction of (6). Thus, we must have

lim
xրx1

f(x) = g(x2)

and
a = lim

yրy1
f−1(y) = f−1(y1) < g−1(y1) ≤ x2.

Notice that this shows a < x2.

We have shown either
f(a) = lim

xրa
f(x) < g(x2)

or
f(a) = lim

xրa
f(x) = g(x2).

Either way,
f(a) = lim

xրa
f(x) ≤ g(x2) < ∞.

This was the main objective of this part.

We have also shown
y1 = lim

xրa
f(x) = f(a).

At this point we can also show s(a) < ∞. In fact,

s(a) = lim
xրa

∫ x

0

√

1 + f ′(ξ)2 dξ

=

∫ ǫ

0

√

1 + f ′(ξ)2 dξ + lim
yրy1

∫ y

f(ǫ)

√

1 +

(

df−1

dy
(η)

)2

dη

≤
∫ ǫ

0

√

1 + f ′(ξ)2 dξ + lim
yրy1

∫ y

g(ǫ)

√

1 +

(

dg−1

dy
(η)

)2

dη

≤ ǫ
√

1 + f ′(ǫ)2 +
π

2s(ǫ)

< ∞.
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(d) These assertions are verified in part (c) above.

We have not shown y1 = f(a) < g(x2), but this can also be shown.

Exercise 1 Assume y1 = f(a) = g(x2) and get a contradiction as follows:

(a) Let

t = max{g−1(y)− f−1(y) : ǫ ≤ y ≤ g(x2)}.
Show t is well-defined and is not attained at either endpoint, but there is some

y∗ with ǫ < y∗ < g(x2) for which

t = g−1(y∗)− f−1(y∗).

(b) Consider the translation h : [ǫ− t, x2 − t] → [f(ǫ), g(x2)] by

h(x) = g(x+ t).

Show this function also has an inverse h−1 : [f(ǫ), g(x2)] → [ǫ− t, x2 − t] with

h−1 ≤ f−1.

(c) Show h−1(y∗) = f−1(y∗), and this implies

−

d2h−1

dy2
(y∗)

[

1 +

(

dh−1

dy
(y∗)

)2
]3/2

≤ −

d2f−1

dy2
(y∗)

[

1 +

(

df−1

dy
(y∗)

)2
]3/2

,

which is a contradiction.
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Problem 4 (one dimensional wave equation) Consider the initial/boundary value
problem







































utt = uxx, 0 < t < 3/2, −1 < x < 2
u(x, 0) = x2, −1 ≤ x ≤ 3/2
ut(x, 0) = −3x, −1 ≤ x ≤ 3/2
u(−1, t) = 1, 0 ≤ t < 3/2
ux(−1, t) = 1− t, 0 < t < 3/2 (former error ux(−1, t) = t− 1)

u(2, t) = 4, 0 ≤ t < 3/2
ux(2, t) = h(t), 0 < t < 3/2.

(a) Use the method of characteristics to find a solution u ∈ C2(W ) where

W = {(x, t) : 0 < t < 3/2, −1 + t < x < 2− t}.

(b) Use the method of characteristics to find a continuous extension v ∈ C2(W−) of
u to W− where

W− = {(x, t) : 0 < t < 3/2, −1 < x < −1 + t}

and v is a classical solution of the problem away from the singular line x = −1+t.

(c) Use the method of characteristics to determine an appropriate function h = h(t)
for the Cauchy data along x = 2 so that you can find a continuous extension
w ∈ C2(W+) of u to W+ where

W+ = {(x, t) : 0 < t < 3/2, 2− t < x < 2}

and w is a classical solution of the problem away from the singular line x = 2−t.

(d) Plot your solution and the associated evolution of x2.
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Problem 5 (a solution of the heat equation) Consider

u(x, t) = e−a2t sin(ax)

for some a > 0.

(a) Show u satisfies the PDE
∂u

∂t
=

∂2u

∂x2
.

(b) Plot u as a function of t and x on the strip [0, π/a]× [0,∞).

(c) Plot the evolution of u0(x) = sin(ax) for 0 ≤ x ≤ x/a and t > 0.

(d) Use mathematical software to animate the evolution of u0.

Problem 6 (comparison of qualitative properties of solutions of hyperbolic and parabolic
PDE) List three (striking) qualitative differences between the evolution of Problem 5
part (d) above and that of Problem 2 part (d) of Assignment 6.

Problem 7 (a solution of the heat equation) Taking a = 1 in Problem 5 above,
consider the initial/boundary value problem















∂u
∂t

= ∂2u
∂x2 , (x, t) ∈ (0, π)× (0,∞)

u(x, 0) = sin(x), x ∈ [0, π]
u(0, t) = u(π, t) = 0, t ≥ 0

for the heat equation.

(a) Show u(x, t) = e−t sin x is a solution of this problem.

(b) Compute
d

dt

∫ π

0

u(x, t) dx.

(c) Show u is the unique solution of the problem in C2((0, π)× (0,∞) ∩ C1([0, π]×
[0,∞)). Hint(s): Let ũ denote any solution of the problem. Compute

d

dt

∫ π

0

(ũ− u)2 dx.

Differentiate under the integral sign and use the PDE. Integrate by parts.
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Problem 8 (fundamental solution of the heat equation) Consider Φ ∈ C∞(R ×
(0,∞)) given by

Φ(x, t) =
1√
4πt

e−x2/(4t).

(a) Show
Φt = Φxx for (x, t) ∈ R× (0,∞).

(b) Show
lim
tր∞

Φ(x, t) = 0.

(c) Show
lim
tց0

Φ(x, t) = 0 for x 6= 0.

(d) Compute
∫ ∞

−∞

Φ(x, t) dx.

Hint(s): Let I be the integral in question. Note that

I2

4
=

(
∫ ∞

0

Φ(x, t) dx

)(
∫ ∞

0

Φ(y, t) dy

)

.

Use polor coordinates.
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Problem 9 (Laplacian is of divergence form; Boas Problem 13.1.1) Recall that the
divergence of a vector field F = (F1, F2, F3) : U → R

3 defined on an open subset
U ⊂ R

3 can be defined as

divF =
∂F1

∂x1
+

∂F1

∂x2
+

∂F1

∂x3
.

An electrostatic field E : U → R
3 is a field with divergence satisfying

divE =
ρ

ǫ0

where ρ is a spatially dependent function modeling charge density and ǫ0 is a
constant called the permittivity of free space. The electrostatic potential φ :
U → R is defined up to a constant by the relation

E = −Dφ.

(a) In general, the electrostatic potential is a solution of Poisson’s equation, that
is, Poisson’s partial differential equation. Compute the divergence of a gradient
to find the form of Poisson’s equation.

(b) If ρ ≡ 0, corresponding to the absence of any electrical charges in the region U ,
then show the electrostatic potential satisfies Laplace’s equation. Solutions
of Laplace’s PDE are called harmonic functions.

(c) Under what physical circumstances would one expect to model the electrostatic
potential in a region by a non-constant solution of Laplace’s equation?

Problem 10 (traveling waves; Boas Problem 13.1.2(a)) If f ∈ C2(R), then (show)
u(x, t) = f(x− ct) solves the wave equation (with the wave speed included).
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