
Math 6702, Assignment 7

Laplace’s Equation on a Rectangle

1. (Problem 6 on Exam 1) Consider the following boundary value problem for Laplace’s
equation on the rectangle U = [0, L] × [0, M ] where L and M are positive numbers.

{

∆u = 0,
u(x, 0) = 0, u(L, y) = 0, u(x, M) = x(x − L), u(0, y) = 0

(1)

(a) Find all separated variables solutions u(x, y) = A(x)B(y). Hint: You should obtain
solutions of the form uj = cjAj(x)Bj(y) with A′′

j = −λjAj and Bj = λjBj for some
positive increasing sequence

0 < λ1 < λ2 < λ3 < · · · .

(b) Find a Fourier expansion of the function g3(x) = x(x−L) and choose the constants
c1, c2, c3, . . . appropriately so that

∞
∑

j=1

cjBj(M)Aj(x) = g3(x).

(c) Take the specific values L = 1 and M = 0.5 and plot enough terms of

u(x, y) =
∞

∑

j=1

cjAj(x)Bj(y)

to convince yourself (and me) that you have obtained a series solution for the
problem.



Solution: The first thing I would do for this problem is draw the boundary values:

Figure 1: The boundary values (left). The approximation (via one term of the
Fourier series) of the values along y = M (right). The approximation of the

solution (one term).

(a) Find all separated variables solutions u(x, y) = A(x)B(y). Putting u = A(x)B(y),
we get

A′′

A
= −

B′′

B
= −λ

For boundary conditions, we get A(0)B(y) = 0, A(L)B(y) = 0, A(x)B(0) = 0,
and A(x)B(M) = x(x − L) Assuming nontrivial solutions, the first three give
A(0) = 0, A(L) = 0, and B(0) = 0. It is unclear what the last one gives, and
in fact it does not give anything. This may not be so obvious, but it becomes
obvious with experience: The first two conditions A(0) = 0 = A(L) give the
crucial boundary conditions for determining separated variables solutions, and
these are the ones you want. So then you get Aj(x) = sin(jπx/L) for
j = 1, 2, 3, . . . with λj = (jπ/L)2. For each λj you also get Bj = sinh(jπy/L)
and B̃j = cosh(jπy/L). Taking account of the last useful boundary condition,
you can eliminate B̃j , so you have separated variables solutions

uj = cj sin
jπx

L
sinh

jπy

L
.

Of course, these don’t satisfy the last boundary condition, but the idea is that
you can handle that in the end by superposition.



(b) Find a Fourier expansion of the function g3(x) = x(x − L) and choose the
constants c1, c2, c3, . . . appropriately so that

∞
∑

j=1

cjBj(M)Aj(x) = g3(x).

We write (as usual)

x(x − L) =

∞
∑

j=1

bj sin
jπx

L
.

Multiplying both sided by sin(kπx/L) and integrating from x = 0 to x = L, we
get

∫ L

0

x(x − L) sin
kπx

L
dx =

L

2
bk.

∫ L

0

x2 sin
kπx

L
dx = −x2 L

kπ
cos

kπx

L
∣

∣

L

x=0

+
2L

kπ

∫ L

0

x cos
kπx

L
dx

= −L2 L

kπ
cos(kπ) + 2x

(

L

kπ

)2

sin
kπx

L
∣

∣

L

x=0

+ 2

(

L

kπ

)2 ∫ L

0

sin
kπx

L
dx

= −
L3

kπ
cos(kπ) − 2

(

L

kπ

)3

cos
kπx

L
∣

∣

L

x=0

= −
L3

kπ
cos(kπ) − 2

(

L

kπ

)3

(1 − cos(kπ)),

and

∫ L

0

x sin
kπx

L
dx = −x

L

kπ
cos

kπx

L
∣

∣

L

x=0

+
2L

kπ

∫ L

0

cos
kπx

L
dx

= −L
L

kπ
cos(kπ) +

(

L

kπ

)2

sin
kπx

L
∣

∣

L

x=0

= −
L2

kπ
cos(kπ).

Therefore,

bk =
2

L

[

−
L3

kπ
cos(kπ) − 2

(

L

kπ

)3

(1 − cos(kπ)) +
L3

kπ
cos(kπ)

]

= −2
2L2

kπ
cos(kπ) −

4L2

(kπ)3
(1 − cos(kπ)) +

2L2

kπ
cos(kπ),



and

ck =
1

Bk(M)
bk

=
1

sinh(kπM/L)

[

−
2L2

kπ
cos(kπ) −

4L2

(kπ)3
(1 − cos(kπ)) +

2L2

kπ
cos(kπ)

]

.

I’ve plotted the approximation
∑

bj sin(jπx/L) ∼ g3(x) with one term on the
right in Figure 1. The function g3 is plotted with a solid curve, and the ap-
proximation is plotted with a dashed curve. Plotting the first three terms (two
nonzero) gives an approximation which is quite close.

(c) Take the specific values L = 1 and M = 0.5 and plot enough terms of

u(x, y) =

∞
∑

j=1

cjAj(x)Bj(y)

to convince yourself (and me) that you have obtained a series solution for the
problem. My plot is shown at the bottom in Figure 1. This is only one term,
but it still looks pretty good because I’ve plotted the boundary with such thick
curves.



Weak Derivatives

2. Consider the tent function T ∈ Lip[0, L] given by

T (x) =

{

bx/a, 0 ≤ x ≤ a
b(L − x)/(L − a), a ≤ x ≤ L.

Show T ∈ W 1(0, L) has a weak derivative.

3. Let a = x0 < x1 < x2 < · · · < xk = b be a partition of [a, b]. Show that if f ∈ C0[a, b]
and for each j = 1, 2, . . . , k, there is a function fj ∈ C1[xj−1, xj ] such that

f∣
∣

[xj−1,xj ]

= fj,

then f ∈ W 1(a, b) has a weak derivative. Notice that such a function f also satisfies
f ∈ Lip[a, b].

Solution: The function g : [a, b] → R by g(x) = f ′

j(x) for xj−1 < x < xj , j =
1, 2, . . . , k is clearly an integrable function with

∫

(a,b)

|g| =
k

∑

j=1

∫ xj

xj−1

|f ′

j(x)| dx.

Thus, we may take φ ∈ C∞

c (a, b) and consider

∫

(a,b)

gφ =

k
∑

j=1

∫ xj

xj−1

f ′

j(x)φ(x) dx.

Integrating by parts on each subinterval, we find

∫

(a,b)

gφ =
k

∑

j=1

[

fj(x)φ(x)∣
∣

xj

x=xj−1

−

∫ xj

xj−1

fj(x)φ′(x) dx

]

=
k

∑

j=1

[fj(xj)φ(xj) − fj(xj−1)φ(xj−1)] −

∫

(a,b)

fφ′

= [fk(xk)φ(xk) − fk(xk−1)φ(xk−1) + fk−1(xk−1)φ(xk−1) − · · ·

+f1(x1)φ(x1) − f1(x0)φ(x0)] −

∫

(a,b)

fφ′

= [fk(b)φ(b) − f1(a)φ(a)] −

∫

(a,b)

fφ′

= −

∫

(a,b)

fφ′.

This is what it means for g to be a weak derivative of f .



§4.9-10 Max/Min Problems

4. (4.9.2) Use the method of Lagrange multipliers to maximize the volume of a silo modeled
by

V = {(x, y, z) : x2 + y2 < r2 and 0 < z < h − m
√

x2 + y2}

given that the total surface area of the structure is a fixed positive number A.

5. (4.10.10) Let T (x, y, z) = y2 + xz model temperature in the solid unit ball Br(0) =
{(x, y, z) : x2 + y2 + z2 < r2} in R3 (extending continuously to the closure of the ball).

(a) Find the highest and lowest temperatures on the circle y = 0, x2 + z2 = 1.

(b) Find the highest and lowest temperatures on the boundary surface x2 +y2 +z2 = 1.

(c) Find the highest and lowest temperatures on the entire closure of the ball.

§5.3 Physical Quantities Involving Integrals

6. (5.3.1) Prove the parallel axis theorem: The moment of inertia I of a body about a given
axis L is I = Im + Md2 where M is the mass of the body, Im is the moment of intertia
of the body about the axis parallel to L through the center of mass of the body, and d
is the distance between the two axes.

7. (5.3.3-4) Let W = {(x, 0, 0) : 0 ≤ x ≤ ℓ} model a thin rod of length ℓ with density
δ(x) = (1 − x/ℓ)a + xb/ℓ for some positive numbers a and b with a < b.

(a) Find the mass of the rod (according to the model).

(b) Compute the center of mass (x̄, 0, 0).

(c) Compute the moment of intertia Im of the rod about an axis perpendicular to the
rod and passing through (x̄, 0, 0).

(d) Compute the moment of intertia I of the rod about the z-axis.

8. (5.3.31) Consider the volume

V = {(x, y, z) ∈ R3 : 1 ≤ z ≤ 1/
√

x2 + y2}.

(a) Compute
∫

V

1.

(b) Show ∂V has infinite area. Hint: Show the area of the lateral portion of ∂V is
greater than or equal to

∫

∞

1

1

y
dy = ∞.

(c) Note that
∫

V
1 < ∞. Evaluate the following “prediction” of this model: If you fill

the volume V with a finite amount/volume of paint, and then pour off the excess,
you can paint an infinite area with a finite amount of paint.


