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John McCuan

April 26, 2021

Multivariable Calculus

Green’s Theorem (Chapter 6 Section 9 of Boas)

Problem 1 You know Gauss’ theorem (or the divergence theorem) in the plane which
says that given a bounded C1 open domain U ⊂ R

2 in the domain of a vector field v
we have

∫

U

div v =

∫

∂U

v · n.

Use Gauss’ theorem to prove Green’s theorem:

∫

U

(

∂Q

∂x
−
∂P

∂y

)

=

∫

∂U

v · T

where v = (P,Q) and T is the counterclockwise unit normal around ∂U .
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Stokes’ Theorem (Chapter 6 Section 11 of Boas)

Stokes’ theorem states that if S is an oriented surface in R
3 in the domain of a

(differentiable) vector field v and having C1 boundary ∂S, then
∫

S

curlv ·N =

∫

∂S

v · T

where N is the unit normal orienting S and T is the counterclockwise unit tangent
around ∂S with respect to N .

The following is not the most wonderful problem in the world, but it is kind of
fun. If you’ve been following/picking up on what I’ve been saying about integration
this semester, then it should be way too easy...even sort of juvenile. If it’s not like
this, then start back with the basics of integration and become an integration ninja.

Problem 2 (Boas 6.11.16) According to Maxwell’s equations (in the potential for-
mulation) any magnetic field B : U → R

3 where U is a simply connected domain
in R

3 satisfies
divB = 0 and B = curlA

where A is the magnetic vector potential. Observe that

0 =

∫

U

divB

=

∫

S

B ·N where S = ∂U by the divergence theorem

=

∫

S

curlA ·N

=

∫

∂S

A · T by Stokes theorem.

If for every closed loop Λ = ∂S we have
∫

Λ

A · T = 0,

then A is conservative. Therefore, there exists a potential function ψ with A = Dψ.
Consequently,

B = curlA = curlDψ = 0,
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so all magnetic fields are zero fields. (You can check by calculation that it’s
always true that the curl of a gradient always vanishes.) Find the error(s) in this
lovely “proof.” Incidentally, the divergence of a curl always vanishes too. We don’t
use that here, but it’s good to know.

I think we’ve pretty much covered (at some level) Chapter 4 (differentiation),
Chapter 5 (integration), and Chapter 6 (vector analysis) of Boas. It would have been
nice to go over Chapter 13 (PDE) in more detail, but I think with what we did do,
there’s nothing in Chapter 13 you can’t read easily. If you read a couple pages of Boas
from time to time, she’ll keep you sharp on your applied math, so it’s a good book to
know about/have.

PDE

Laplace’s Equation on a Rectangle

Consider again the boundary value problem for Laplace’s equation on the rectangle
U = [0, L]× [0,M ] where L and M are positive numbers.

{

∆u = 0,
u(x, 0) = 0, u(L, y) = 0, u(x,M) = x(x− L), u(0, y) = 0

(1)

Problem 3 (a) Find a function g ∈ C∞([0, L]× [0,M ]) such that

g∣
∣

∂U\{y=M}

≡ 0 and g(x,M) = g3(x) = x(x− L).

Hint: Take a convex combination of g1 ≡ 0 and g3.

(b) Let w = u−g and write down the boundary value problem for Poisson’s equation
satisfied by w.

(c) Consider the Fourier basis

{φjk}
∞

j,k=1 with φjk(x, y) = sin
jπx

L
sin

kπy

M
.

Expand −∆g in a Fourier series

−∆g =

∞
∑

j,k=1

ajkφjk.
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(d) Let wjk solve
{

∆w = φjk,
w∣
∣

∂U

≡ 0. (2)

Hint: Compute ∆φjk.

(e) Take the specific values L = 1 and M = 0.5 and plot enough terms of

u(x, y) = w(x, y) + g(x, y) where w =

∞
∑

j,k=1

ajkwjk

to convince yourself (and me) that you have obtained a series solution for the
problem. (Postscript/Note: The plots might look a little better with L = 1 and
M = 3. Or you could do L = 2 and M = 5 for example, but these kinds of
aspect ratios may be easier for the visualization.)

First Order Cauchy Problem

Problem 4 (a) Solve the PDE

xux − yuy + (x2 + y2)u = x2 − y2 on U = {(x, y) ∈ R
2 : x, y > 0}.

“Solve” here means “Find all possible C1 solutions.” Your solution should de-
pend on an arbitrary function which you will need to introduce. Knowing how
to do that is part of the problem. (This is like if someone says: Solve x′′ = 0.
Then you know x = at+ b with two arbitrary constants a and b.)

Hint(s): Consider the characteristic field v = (x,−y) on the first quadrant
U . Plot it with numerical software if necessary. Choose an appropriate non-
characteristic curve.

(b) Solve the Cauchy problem:

{

x1ux1
+ 2x2ux2

+ ux3
= 3u

u(x1, x2, 0) = g(x1, x2).
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Problem 5 (one dimensional wave equation) Solve the initial value problem for the
wave equation:







utt = uxx on R× [0,∞)
u(x, 0) = u0(x)
ut(x, 0) = v0(x)

(3)

where u0 ∈ C2(R) and v0 ∈ C1(R) to obtain d’Alembert’s solution:

u(x, t) =
1

2
[u0(x+ t) + u0(x− t)] +

1

2

∫ x+t

x−t

v0(ξ) dξ.

Hint(s): Factor the operator �u = utt − uxx as either

(ut − ux)t + (ut − ux)x or (ut + ux)t − (ut + ux)x.

Then solve two first order PDEs with appropriate Cauchy conditions. Incidentally,
the initial conditions in (3) are Cauchy conditions for the wave equation.

The 2D Heat Equation on U ⊂ R
2

Problem 6 Derive the heat equation (carefully and from scratch) as it applies to a
laminar domain U ⊂ R

2. Start by listing/identifying all the quantities you will use
with their units. I’ll start you out and give you a sort of outline to follow. When I
put an ellipsis (· · · ), this will mean there are details for you to fill in—probably lots
of them.
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quantity identification units

θ2 = θ2(x, y, t), areal or laminar heat energy density [θ2] =
[energy]

L2

...

Incidentally, energy has units of work [energy] = [force]L = ML2

T 2

...
~φ2 = ~φ2, laminar heat flux field [~φ2] = . . .
...
...
u = u(x, y, t), temperature [u] = [temperature]
Du = Du(x, y, t), temprature gradient [Du] = . . .
σ = σ(x, y, u), specific heat capacity [σ] = . . .
K2 = K2(x, y, u), laminar thermal conductivity [K2] = . . .
...
...

Accounting of rate of change of total energy

d

dt

∫

U

θ2 = −

∫

∂U

~φ2 · n+

∫

U

Q2

. . .
Law of specific heat . . .
Fourier’s law . . .

∂

∂t
[σρ2u] = div[K2Du] +Q2.

. . .
Finally, taking σρ2 = K2 (constant) and setting f = Q2/K2,

ut = ∆u+ f.
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Problem 7 Consider the heat equation ut = k∆u+ f (with forcing) on

B1(0)× [0,∞) = {(x, y, t) : x2 + y2 < 1 and t ≥ 0}.

(a) Let w(ξ, η, τ) = u(αξ, αη, βτ) where α and β are positive constants. Determine
the domain of w, and compute

wτ (ξ, η, τ) and ∆w(ξ, η, τ) = wξξ + wηη.

(b) (scaling in time) Say you know how to solve wτ − ∆w = f0(ξ, η, τ) for any
f0 ∈ C0(B1(0)× [0,∞)) with a particular initial condition

w(x, y, 0) = g0(x, y)

and a homogeneous boundary condition

w∣
∣

x2+y2=1

= 0 for all time τ ≥ 0.

Explain how to solve










ut − k∆u = f on B1(0)× [0,∞)
u(x, y, 0) = g0(x, y), (x, y) ∈ B1(0)
u∣
∣

x2+y2=1

= 0, for all time t ≥ 0

for k 6= 1 by scaling in time. Hint: Use the idea of part (a).

(c) (scaling in space) If wt = ∆w on W = B5(0)× [0,∞) find the PDE satisfied by
u(x, y, t) = w(5x, 5y, t) on B1(0)× [0,∞).

(d) (anisotropic heat diffusion) Find an appropriate domain on which to solve the
heat equation wt = ∆w which allows you to solve the anisotropic heat equation

ut = 3uxx + 2uyy on B1(0)× [0,∞).

Hint: Scale in space by different factors in different directions, i.e., anisotropi-
cally. If you know

u(x, y, 0) = u0(x, y) and u∣
∣

x2+y2=1

= g(x, y, t),

then what are the corresponding boundary conditions for w?
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The Gradient System

Consider the first order system of PDEs

{

ux = φ
uy = ψ

(4)

for a function u ∈ C1(R2) where φ and ψ are given functions in C0(R2). These are
called the gradient PDEs. Notice the left side is the same as the Cauchy-Riemann
equations.

Problem 8 (a) How many unknowns are there in (4)? How many equations? What
does this suggest from the linear algebra/specification of partials point of view?

(b) Show that if u = u(x, y) is a solution of (4) with u ∈ C1(R2), then

u(x, y) = u1(x) +

∫ y

0

ψ(x, η) dη = u2(y) +

∫ x

0

φ(ξ, y) dξ

where u1 ∈ C1(R) with u1(x) = u(x, 0) and u2 ∈ C1(R) with u2(y) = u(0, y).

(c) Solve the Cauchy problems

{

ux = φ
u(0, y) = g2(y)

and

{

uy = ψ
u(x, 0) = g1(x)

for u ∈ C2(R2) where g1, g2 ∈ C1(R1), and show the solutions are unique.

(d) Show that if φ, ψ ∈ C1(R2) and u ∈ C1(R2) solves (4), then u ∈ C2(R2) and
φy = ψx. Conclude that

{Du ∈ C0(R2)× C0(R2) : u ∈ C1(R2)}

the set of all gradients, i.e., pairs (φ, ψ) ∈ C0(R2) × C0(R2) for which (4) is
solvable satisfies

{Du ∈ C0(R2)×C0(R2) : u ∈ C1(R2)} ⊃ {(φ, ψ) ∈ C1(R2)×C1(R2) : φy = ψx}.
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Problem 9 (Boas Chapter 6 sections 7-11) A vector field v = (φ, ψ) on R
2 is a

gradient field or exact or conservative if there exists a potential function u :
R

2 → R such that v = Du.

(a) Given any vector field v : R
2 → R

2, extend v to a field v : R
3 → R

3 by
v(x, y, z) = (v1, v2, 0). Interpret the condition for v to be a gradient field from
Problem 8(d) above in terms of the curl operator applied to v.

(b) What is a natural domain and codomain for the curl operator?

(c) Give a counterexample to the following assertion: If v ∈ C1(U) and curlv ≡ 0 on
U then there exists a function u ∈ C2(U) such that Du = v. Notice the domain
U here is not necessarily all of R2. Hint: If U is simply connected, then the
assertion does hold. (If this hint doesn’t help do a literature/internet search for
something like “nonexact curl free field” or “nonconservative curl free field.”)

Energy Estimates and Uniqueness

Problem 10 In this problem energy estimates/identities are used to prove unique-
ness for classical solutions of the three standard linear second order PDE: Laplace’s
equation, the heat equation, and the wave equation.

(a) Show that if u ∈ C2(U) satisfies Laplace’s equation, then

∫

U

|Du|2 =

∫

∂U

uDu · n.

(b) Use part (a) to prove classical solutions u ∈ C2(U) of the boundary value problem

{

−∆u = f on U
u∣
∣

∂U

= g

for Poisson’s equation with fixed/given inhomogeneities f, g ∈ C0(U) are unique.
Hint: Let v ∈ C2(U) be another solution and consider w = u− v.
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(c) Use part (a) to prove classical solutions u ∈ C2(U) of the boundary value problem

{

−∆u = f on U
Du · n∣

∣

∂U

= h

for Poisson’s equation with fixed/given inhomogeneities f, h ∈ C0(U) are unique
up to a constant.

(d) Show that if u ∈ C2(U × [0, T )) satisfies the heat equation, then

d

dt

∫

U

u2 = 2

∫

∂U

uDu · n− 2

∫

U

|Du|2.

(e) Use part (d) to prove classical solutions u ∈ C2(U × [0, T )) for some T > 0 of
the initial/boundary value problem















ut = ∆u+ f on U × (0, T )
u∣
∣

t=0

= u0

u∣
∣

x∈∂U

= g(x, t)

for the forced heat equation with fixed/given inhomogeneities f, u0, g ∈ C0(U ×
[0, T )) are unique.

(f) Use part (d) to prove classical solutions u ∈ C2(U × [0, T )) for some T > 0 of
the initial/boundary value problem















ut = ∆u+ f on U × (0, T )
u∣
∣

t=0

= u0

Du · n∣
∣

x∈∂U

= h(x, t)

for the forced heat equation with fixed/given inhomogeneities f, u0, h ∈ C0(U ×
[0, T )) are unique.

(g) Show that if u ∈ C2(U × [0, T )) satisfies the wave equation, then

d

dt

∫

U

(u2t + |Du|2) = 2

∫

∂U

utDu · n.
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(h) Use part (g) to prove classical solutions u ∈ C2(U × [0, T )) for some T > 0 of
the initial/boundary value problem



























utt = ∆u+ f on U × (0, T )
u∣
∣

t=0

= u0

ut∣
∣

t=0

= v0

u∣
∣

x∈∂U

= g(x, t)

for the forced wave equation with fixed/given inhomogeneities f, u0, v0, g ∈ C0(U×
[0, T )) are unique.
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