
Assignment 6: Selected Solutions

Heat Equation

Due Friday, March 14, 2025

John McCuan

March 15, 2025

Problem 1 (locally Lipschitz functions) A function f : (a, b) → R is said to be
locally Lipschitz and we write f ∈ Liploc(a, b) if given any α, β ∈ R with a < α <
β < b, there is some constant M > 0 for which

|f(x1)− f(x2)| ≤ M |x1 − x2| for all x1, x2 ∈ [α, β].

Show a convex function f : (a, b) → R is locally Lipschitz.

Solution: Recall that the main defining property for a convex function like this is

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2) when a < x1, x2 < b, 0 ≤ t ≤ 1. (1)

Generally speaking one can assume also x1 ≤ x2, because one can change the names
of these points. There are two nice consequences of this condition that it may be
useful to point out in isolation. Both are related to the following observation about
convex combinations:

Given x1 ≤ x ≤ x2 with x1 < x2 there is a unique number

t =
x− x1

x2 − x1

so that 0 ≤ t ≤ 1 and
x = (1− t)x1 + tx2.

Note also that

1− t =
x2 − x

x2 − x1
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so what this is saying is
x2 − x

x2 − x1
x1 +

x− x1

x2 − x1
x2 = x

which is easy to just check. In particular, given three points x1 < x < x2 one has
from the basic convexity condition (1)

f(x) ≤
x2 − x

x2 − x1

f(x1) +
x− x1

x2 − x1

f(x2). (2)

This expression can be rearranged algebraically in several different ways to obtain
various consequences. We have immediately that

(x2 − x1)f(x) ≤ (x2 − x)f(x1) + (x− x1)f(x2).

This means
x2 − x1

x− x1

f(x)−
x2 − x

x− x1

f(x1) ≤ f(x2). (3)

This gives a lower bound for f(x2) which can be written as

f(x1) +
x2 − x1

x− x1
f(x)−

x2 − x1

x− x1
f(x1) ≤ f(x2)

or

f(x1) +
x2 − x1

x− x1
[f(x)− f(x1)] ≤ f(x2).

where it may be noticed that the espression on the left gives the value ℓ(x2) of an
affine function ℓ evaluated at x with graph passing through (x1, f(x1)) with slope

f(x)− f(x1)

x− x1
.

Alternatively, we can think of x as fixed and write (3) as

f(x) +
x2 − x

x− x1

f(x)−
x2 − x

x− x1

f(x1) ≤ f(x2)

or

f(x) +
x2 − x

x− x1

[f(x)− f(x1)] ≤ f(x2). (4)

Thus, we have ℓ(x2) ≤ f(x2) where ℓ is the same affine function with graph passing
through (x, f(x)) and having the same slope

f(x)− f(x1)

x− x1
.
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We can call the first class of consequences “bounding.” For example, in our
problem let a1 = (a+ α)/2 and b1 = (β + b)/2. Notice that

a < a1 < α < β < b1 < b.

If α ≤ x1 ≤ x2 ≤ β, then applying the bounding condition (from below) in the form
(4) with the three points α < x1 ≤ x2 we get

f(x1) +
f(x1)− f(α)

x1 − α
(x2 − x1) ≤ f(x2). (5)

This is illustrated on the left in Figure 1.

Figure 1: Lower bound for the value f(x2) (left). Upper bound for the value f(x2)
(right.)

Returning to (2) we can also write

f(x) ≤ ℓ(x) =
x2f(x1)− x1f(x2)

x2 − x1

+
f(x2)− f(x1)

x2 − x1

x (6)

so that f(x) is bounded above by the affine function with graph passing through
(x1, f(x1)) and (x2, f(x2)), that is the secant line on the right in Figure 1.

Taking the three points x1 ≤ x2 < β, the relation (6) giving a bound from above
becomes

f(x2) ≤
βf(x1)− x1f(β)

β − x1
+

f(β)− f(x1)

β − x1
x2 (7)

which can also be “read off” from the illustration on the right in Figure 1 in one of
the forms

f(x2) ≤ f(x1) +
f(β)− f(x1)

β − x1

(x2 − x1)
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or

f(x2) ≤ f(β) +
f(β)− f(x1)

β − x1

(x2 − β).

Combining (5) and (7) we have

f(x1) +
f(x1)− f(α)

x1 − α
(x2 − x1) ≤ f(x2) ≤ f(x1) +

f(β)− f(x1)

β − x1
(x2 − x1)

or
f(x1)− f(α)

x1 − α
(x2 − x1) ≤ f(x2)− f(x1) ≤

f(β)− f(x1)

β − x1
(x2 − x1)

which looks very promising for showing f satisfies some kind of Lipschitz continuity
condition. The problem of course is that we need to bound below the quantity

m1 =
f(x1)− f(α)

x1 − α

by some negative constant M1 and we need to bound from above the quantity

m2 =
f(β)− f(x1)

β − x1

by some positive constant M2. We need both bounding constants M1 < 0 < M2

independent of x1, and it would be nice to have the relation −M1 = M2 = M . This
latter condition we can always ensure by taking a maximum of two numbers.

To obtain the basic bounds here we return to the general convexity condition (2)
and observe a second general consequence which we can call “monotonicity of secant
slopes.” Specifically, we can rearrange (2) as

f(x)− f(x1)

x− x1

≤
f(x2)− f(x)

x2 − x
(8)

Which says that the slope of the secant line determined by the points (x1, f(x1))
and (x, f(x)) is no greater than the slope of the secant line determined by the points
(x, f(x)) and (x2, f(x2)). Basically, the slopes of secant lines are increasing on the
graph of a convex function. This property is illustrated in Figure 2.

Applying the relation (8) with the three points a1 < α < x1 we have

f(α)− f(a1)

α− a1
≤

f(x1)− f(α)

x1 − α
.
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Figure 2: Monotonicity of slopes of secant lines for a convex function.

Note the number on the left is independent of x1, which is a good thing. This number
is not necessarily negative, but we can say

−

∣

∣

∣

∣

f(α)− f(a1)

α− a1

∣

∣

∣

∣

≤
f(α)− f(a1)

α− a1
.

The number

−

∣

∣

∣

∣

f(α)− f(a1)

α− a1

∣

∣

∣

∣

might still be zero, but we can obtain a negative lower bound as desired by taking

M1 = −

(
∣

∣

∣

∣

f(α)− f(a1)

α− a1

∣

∣

∣

∣

+ 1

)

.

Notice this is a strictly negative finite valued real number with

M1(x2 − x1) ≤ f(x2)− f(x1).

Similarly, using the three points x2 < β < b1 we obtain from the monotonicity of
slopes

f(β)− f(x2)

β − x2
≤

f(b1)− β

b1 − β

and

M2 =

∣

∣

∣

∣

f(b1)− β

b1 − β

∣

∣

∣

∣

+ 1
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is a finite positive real number for which

f(x2)− f(x1) ≤ M2(x2 − x1).

Thus, we have
M1(x2 − x1) ≤ f(x2)− f(x1) ≤ M2(x2 − x1).

Taking M = max{−M1,M2} gives

|f(x2)− f(x1)| ≤ M(x2 − x1)

where M is a fixed number depending only on a, b, α, and β, and the condition holds
whenever x1 and x2 satisfy α < x1 ≤ x2 < β. This is enough to conclude the locally
Lipschitz assertion

|f(x2)− f(x1)| ≤ M |x2 − x1|

for all x1 and x2 with α < x1, x2 < β.

For the problems below let U be a bounded, open, and connected subset of Rn

with ∂U a smooth hypersurface admitting a continuous outward unit normal field
n : ∂U → R

n.
Please also note the following result:

Theorem 1 (first law of vanishing integrals) If f ∈ C0(U) and

∫

Br(p)

f = 0 for every ball with Br(p) ⊂ U ,

then f(x) = 0 for every x ∈ U .
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Problem 2 (thermal/heat energy density and thermal flux) Assume T > 0 and
Θ ∈ C1(U × [0, T )) is a function modeling the density of thermal energy in a spatial
region modeled by U at time t so that the total thermal energy within a domain of
integration Ω⊂⊂U at time t ∈ [0, T ) is given by

∫

x∈Ω

Θ(x, t).

Assume also that ~φ ∈ C0(U × [0, T ) → R
n) is a thermal flux field modeling

the flux of thermal energy so that the rate of thermal energy crossing the oriented
hypersurface S in the direction of the unit normal field n ∈ C0(S → R

n) is
∫

x∈S

~φ(x, t) · n(x).

(a) Find the physical dimensions of Θ. Hint: The physical dimensions of velocity
are “length per time,” so that if ẋ is a velocity, then

[ẋ] =
L

T
.

The physical dimensions of energy are the dimensions of force times length, and
the dimensions of force are mass times acceleration, so if e is an energy

[e] = [force]L =
ML2

T 2
.

(b) Find the physical dimensions of the thermal flux ~φ.

(c) Assuming the entire change in total thermal energy in a fixed region (modeled
by) Ω⊂⊂U is the result of thermal flux across ∂Ω, state a law of conservation

of energy relating Θ and ~φ. Hint: Calculate the rate at which thermal energy
exits Ω (in two different ways).

(d) Find the physical dimensions of your equation.

Solution:

(a) Find the physical dimensions of Θ. The thermal energy density is integrated over
the medium of dimension n to obtain a total energy. This means

Ln[Θ] = [force]L =
ML2

T 2
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or

[Θ] =
M

T 2Ln−2
.

Notice that this means thermal energy density is scale invariant in two spatial
dimensions.

(b) Find the physical dimensions of the thermal flux ~φ.

Ln−1[~φ] =
[energy]

T
=

ML2

T 3

so

[~φ] =
M

T 3Ln−3
.

(c) Assuming the entire change in total thermal energy in a fixed region (modeled
by) Ω⊂⊂U is the result of thermal flux across ∂Ω, state a law of conservation

of energy relating Θ and ~φ. Hint: Calculate the rate at which thermal energy
exits Ω (in two different ways).

d

dt

∫

Ω

Θ = −

∫

∂Ω

~φ · n.

(d) The dimensions of this equation are those of energy per time:

ML2

T 3
.
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Problem 3 (a first heat equation) Consider generalizing the law of conservation of
thermal energy from part (c) of Problem 2 above. Assume the change in thermal
energy within a region Ω⊂⊂U is not entirely determined by the thermal flux across
∂Ω but is also affected by some “bulk” thermal change at a rate

∫

x∈Ω

F (x, t)

where F ∈ C0(U × [0, T )) and

[F ] =
[energy]

TLn
=

M

T 3Ln−2
.

Such a function F is called a bulk/internal energy rate density or thermal forcing.

(a) Give two examples in which one expects to use a function F < 0 to model “bulk”
thermal energy change in a region.

(b) Give two examples in which one expects to use a function F > 0 to model “bulk”
thermal energy change in a region.

(c) Generalize your conservation law from part (c) of Problem 2 to account for “bulk”
thermal energy change.

(d) Use the first law of vanishing integrals to derive a differential equation modeling
thermal energy with a region modeled by U . Hint: Use the divergence theorem
to write the thermal flux out of Ω as an integral over Ω.

Solution:

(a) Give two examples in which one expects to use a function F < 0 to model “bulk”
thermal energy change in a region.

• If there is an endothermic chemical reaction taking place within the con-
ducting material, then thermal energy is removed from the material by a
means other than conduction, and this might be modeled by a negative
bulk contribution to energy.

• In modeling heat conduction in a medium of space dimension n = 1 or
n = 2 which is viewed as actually positioned in a three-dimensional phys-
ical space, the medium is accessible from “outside” and there can be an
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extraction of thermal energy through the exposed accessible portion(s) of
the medium. For example, if heat conduction in a thin wire is modeled
with a heat equation corresponding to spatial dimension n = 1 and the
wire is located in a bath of cold water or ice, the contact with the cold
water can constitute an external extraction of thermal energy not taken
account of through “internal” one-dimensional thermal flux.

There is no theoretical restriction on dimension here. For any spatial
dimension n, one can model direct thermal extraction of energy from a
“lateral” portion of a medium accessible from a higher dimensional ambient
space. I do not know of any “real” physical applications of this theoretical
observation that fall outside ambient spatial dimension n+k = 3., so n = 1
or n = 2, but I’ll guess there is something like this in general relativity
where one can imagine thermal conduction in a three dimensional medium,
say a galaxy or nebula, with access from some imagined four dimensional
(or higher) ambient space.

(b) Give two examples in which one expects to use a function F > 0 to model “bulk”
thermal energy change in a region.

• In the presence of an exothermic chemical reaction within the conducting
medium being modeled.

• Exchange the bath of ice in the example for F < 0 above with a both of
“hot” material “outside” the medium being modeled.

(c) Generalize your conservation law from part (c) of Problem 2 to account for “bulk”
thermal energy change.

d

dt

∫

Ω

Θ = −

∫

∂Ω

~φ · n+

∫

Ω

F.

(d) Use the first law of vanishing integrals to derive a differential equation modeling
thermal energy with a region modeled by U . Hint: Use the divergence theorem
to write the thermal flux out of Ω as an integral over Ω.

∫

Ω

(

∂Θ

∂t
+ div ~φ− F

)

= 0.

If this conservation law/relation holds for “nice” subdomains Ω, then

∂Θ

∂t
= − div ~φ+ F
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assuming adequate regularity of course.
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Problem 4 Prove the first law of vanishing integrals. Hints:

(a) Assume f(p) > 0 and try to obtain a contradiction.

(b) Use the continuity of f at p to get an estimate from below on

∫

Br(p)

f.

Solution: If f(p) > 0, then by continuity there is some r > 0 so that

|f(x)− f(p)| <
f(p)

2
for x ∈ Br(p).

This implies that for x ∈ Br(p)

f(x) = f(p) + f(x)− f(p) ≥ f(p)− |f(x)− f(p)| >
f(p)

2
> 0.

Hence
∫

Br(p)

f ≥
f(p)

2
ωnr

n > 0.

This contradicts the hypothesis of the “law.”
Thus we know f(x) ≤ 0 for all x ∈ U . Notice the hypothesis of the “law” applies

also to the function g = −f because

∫

Br(p)

g = −

∫

Br(p)

f.

We conclude g = −f ≤ 0 as well, or f ≥ 0. This shows f ≡ 0 as required.
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Problem 5 (A second heat equation) Your answer to part (d) of Problem 3 above
should be a single partial differential equation for (or relating) two unknown quanti-

ties, the thermal energy density Θ and the thermal flux field ~φ.

(a) How many unknown real valued functions are there in your partial differential
equation?

(b) The law of specific heat asserts that the thermal energy density in a substance
is proportional to a physical quantity called temperature (or absolute tem-
perature). Modeling the temperature with a function u : U × [0, T ) → R and
denoting the constant of proportionality1 by c, the law of specific heat can be
expressed as

Θ = cu.

The quantity “temperature” is usually considered to have a new fundamental
physical dimension denoted by T . Find the physical dimensions of specific heat
capacity.

(c) Fourier’s law of heat conduction asserts that the thermal flux field is pro-
portional to the spatial gradient of the temperature. The concept of a spa-
tial gradient applies to functions with no time dependence like solutions of
Laplace’s equation in which case the spatial gradient is the same as the usual
gradient, that is the vector of partial derivatives of the function. For solutions
u : U × [0, T ) → R of evolution equations like the heat equation and wave
equation the spatial gradient is the vector of partial derivatives with respect to
only the variables associated with the spatial domain U ⊂ R

n. In this
context there is a special name for the vector

(

∂u

∂x1

,
∂u

∂x1

, . . . ,
∂u

∂xn

,
∂u

∂t

)

∈ R
n+1.

This vector which is not used very often is called the full space-time gradient,
and usually when one refers to “the gradient” he means the spatial gradient.

The constant of proportionality in Fourier’s law of heat conduction is denoted
by −k where k is called the thermal conductivity.

1
This constant is called specific heat capacity.
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(i) Write down Fourier’s law of heat conduction.

(ii) Find the physical dimensions of the conductivity, and

(iii) Discuss the sign of the constant of proportionality. In other words, what
did Fourier intend to model with this relation?

(d) Substitute expressions involving the temperature u for the thermal energy density
and the thermal flux field in your equation from part (d) of Problem 3 to
obtain a single partial differential equation for the single real valued function
u ∈ C2(U × [0, T )).

Solution:

(a) Starting with the equation
∂Θ

∂t
= − div ~φ+ F,

there are n unknown real valued functions φ1, φ2, . . . , φn in the thermal flux and
one energy density Θ for a total of n+ 1 unknown real valued functions.

(b) specific heat. With
Θ = cu

and denoting [u] by temp we have

[c] =
[Θ]

temp
=

M

T 2Ln−2temp
.

(c) Fourier’s law of heat conduction.

(i) Write down Fourier’s law of heat conduction.

~φ = −kDu.

(ii) Find the physical dimensions of the conductivity.

[k] =
[~φ]

[Du]
=

M

T 3Ln−3

/

temp

L
=

M

T 3Ln−4temp
.
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(iii) Discuss the sign of the constant of proportionality. In other words, what
did Fourier intend to model with this relation?

Note that Du(x) gives the direction of maximum temperature increase at
the point x. Thus, Fourier’s law

~φ = −kDu.

states heat flux should be in the direction of maximum decrease in tem-
perature. In other words, at each point x one assumes for small h > 0 the
temperature

u(x+ h~φ(x))

is lower than the temperature u(x) so that the thermal flux is from

higher temperature to lower temperature, and ~φ(x) is chosen so that

lim
hց0

u(x+ h~φ(x))− u(x)

h
= Du(x) · ~φ(x)

takes the minimum or most negative value possible. By the Cauchy-
Schwarz inequality

|Du(x) · ~φ(x)| ≤ |Du(x)| |~φ(x)|

with equality if and only if ~φ(x) is parallel to |Du(x)|. Thus for a minimum
value, one should have

~φ(x) = −kDu(x)

for some k > 0. In principle, at this point one could take the constant k
as a function of x. Sometimes that is what one wants to do. One may
even want to consider k = k(x, t, u) to depend on time and temperature as
well. We have taken a simple assumption that the thermal conductivity k
is constant throughout the medium.

(d) Substitute expressions involving the temperature u for the thermal energy density
and the thermal flux field in your equation from part (d) of Problem 3 to
obtain a single partial differential equation for the single real valued function
u ∈ C2(U × [0, T )).

With the suggested substitutions the equation reads

(cu)t = −÷ (−kDu) + F
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If c and k are constants, or even if c is time independent and k is spatially
independent, then we get

cut = k∆u+ F,

as always assuming adequate regularity.
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Problem 6 (boundary values and special cases of the heat equation) This problem
is based on your answer to part (d) of Problem 5 above. You should be able to write
the equation you have obtained in the form

Lu = F (9)

where L : C2(U × [0, T )) → C0(U × [0, T )) is called the heat operator.

(a) A solution u : U × [0, T ) → R of the heat equation (9) is said to be time
independent or an equilibrium solution if

∂u

∂t
≡ 0.

What conditions on the internal/bulk forcing function F are required for the
existence of an equilibrium solution?

(b) If the conditions on F in part (a) above are satisfied and u is an equilibrium
solution, what partial differential equation is satisfied by w : U → R with
w(x) = u(x, t)?

(c) If u is an equilibrium solution and F ≡ 0, what partial differential equation is
satisfied by w : U → R with w(x) = u(x, t)?

(d) The heat equation (9) by itself is highly underdetermined, i.e., the equation
typically has many solutions. The determination of a unique solution usually
requires the imposition of both initial conditions and boundary conditions.

(i) An initial condition for the heat equation (9) takes the form of an initial
temperature profile

u(x, 0) = u0(x)

where u0 : U → R is a given function. Find a solution of the initial value
problem

{

Lu = 0, (x, t) ∈ R
n × (0,∞)

u(x, 0) = sin(ω1x1) sin(ω2x2) · · · sin(ωnxn), x ∈ R
n.

for the heat equation on all of Rn with initial condition given by a product
of periodic functions. Hint: Look for a solution of the form u(x, t) =
A(x)B(t) for a function A : Rn → R of an appropriate form.
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(ii) When U is a bounded open subset of Rn, then a (typical) boundary con-
dition specifies some combination of temperature and thermal flux:

au(x, t) + bDu(x, T ) · n = g(x, t) for x ∈ ∂U

where a and b are constants. Let L > 0. Solve the initial/boundary value
problem for the unforced heat equation:







Lu = 0, (x, t) ∈ (0, L)× (0,∞)
u(x, 0) = sin(2πx/L), 0 < x < L
u(0, t) = 0 = u(L, t), t > 0.

Hint: Watch the entertaining video:

https://tomrocksmaths.com/2022/11/10/

oxford-calculus-how-to-solve-the-heat-equation/

(iii) Let L > 0. Solve the initial/boundary value problem for the unforced heat
equation:







Lu = 0, (x, t) ∈ (0, L)× (0,∞)
u(x, 0) = 2 + cos(2πx/a), 0 < x < L
ux(0, t) = 0 = ux(L, t), t > 0.

Hint: Subtract from u an appropriate equilibrium solution.
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Problem 7 (fundamental solution of Laplace’s equation when n = 2 and n = 1)

(a) Show that if Φ : R2\{0} → R is a solution of ∆Φ = 0 with Φ(x) = φ(|x|) for
some φ ∈ C2(0,∞), then

lim
rց0

∫

Br(0)

Φ = 0.

(b) Show that if Φ : R1\{0} → R is a solution of ∆Φ = 0 with Φ(x) = φ(|x|) for
some φ ∈ C2(0,∞), then

lim
rց0

∫

Br(0)

Φ = 0.

Solution:

(a) According my solution of Problem 4 of Assignment 4, such a function must have
values given by Φ(x, y) = c1 + c2 ln

√

x2 + y2. Therefore,

∫

Br(0)

Φ = πr2c1 + 2πc2

∫ r

0

t ln t dt.

Clearly,
lim
rց0

πr2c1 = 0.

We consider then
∣

∣

∣

∣

∫ r

0

t ln t dt

∣

∣

∣

∣

= −

∫ r

0

t ln t dt

for r < 1. Recall that

ln t =

∫ t

1

1

x
dx ≥ −

1− t

t

for 0 < t < 1. Therefore,

∣

∣

∣

∣

∫ r

0

t ln t dt

∣

∣

∣

∣

≤

∫ r

0

t
1− t

t
dt ≤ r.

Therefore,

lim
rց0

∫

Br(0)

Φ = 0.
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(b) In this case, we must have Φ(x) = c|x| for some c ∈ R, and

∣

∣

∣

∣

∫

Br(0)

Φ

∣

∣

∣

∣

= |c|

∣

∣

∣

∣

∫ r

−r

|x| dx

∣

∣

∣

∣

= |c|r2.

Clearly then

lim
rց0

∫

Br(0)

Φ = 0.
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Problem 8 (fundamental solution of Laplace’s equation when n = 2) Let

Φ : R2\{(0, 0)} → R

denote a non-constant axially symmetric solution of Laplace’s equation with Φ(x) = 0
when |x| = 1. Find the unique constant C ∈ R for which

∆u = −f for all f ∈ C3
c (R

2)

where

u(x) = C

∫

ξ∈R2

Φ(ξ)f(x− ξ).

Solution: Since Φ is integrable on all of R2, we know the convolution u = Φ ∗ f is
differentiable with

∆u = Φ ∗∆f.

We denote derivatives with respect to a variable of integration with a superscript so

divξDΦ(x− ξ) = −∆Φ(x− ξ) or Dηf(x− η) = −Df(x− η).

Initially, we start with Φ(x) = c1 + c2 ln |x| in accord with the solution of Problem 4
of Assignment 4. The suggested normalization Φ(x) = 0 when |x| = 1 gives c1 = 0,
so the suggested consideration of the function Ψ with Ψ(x) = CΦ(x) = Cc2 ln |x|
may be reduced to the consideration of the case c2 = 1.

It is suggested that there is a unique value of the constant C for which the condition
∆u = −f holds for all f ∈ C3

c (R
2). As another preliminary observation we can see

that the constant C = 0 cannot be such a value. Thus, we may assume C 6= 0.
We note also that for f fixed, the problem ∆u = −f on all of Rn without growth

restrictions does not have a unique solution. In particular, given any solution u ∈
C3(R2), the function with values u(x)+v ·x+ b is also a solution for any v ∈ R

2 and
b ∈ R. And these are not the only solutions simply because the PDE ∆u0 = 0 on all
of R has many more solutions. For example, u0 ∈ C∞(R2) with

u0(x, y) = a1e
x cos y + a2e

x sin y

has ∆u0 ≡ 0, so the function(s) with values

u0(x, y) = v · (x, y) + b+ a1e
x cos y + a2e

x sin y

are also solutions. And one can take the real part of any entire complex differentiable
function to find many more solutions.
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As in the higher dimensional case, in order to work away from the singularity of
Φ we delete a neighborhood Br(0) of 0 and compute

A(r) = C

∫

R2\Br(0)

ln |ξ| ∆f(x− ξ)

with the intention of determining a nice form for the limit

CΦ ∗∆f(x) = C

∫

ξ∈R2

Φ(ξ)∆f(x− ξ) = lim
rց0

A(r).

For a fixed x, the function h ∈ C1(R2) by h(ξ) = ∆f(x − ξ) also has compact
support, so there is some R > 0 so that

A(r) = C

∫

ξ∈BR(0)\Br(0)

ln |ξ| ∆f(x− ξ).

More generally, the functions fx ∈ C3(R2) by fx(ξ) = f(x− ξ) and g ∈ C2(R2 → R
2)

by g(ξ) = Df(x− ξ) also have compact support which we can assume to be a subset
of BR(0). We will use these conditions on support below.

We proceed with the product rule and the divergence theorem:

A(r)/C =

∫

ξ∈BR(0)\Br(0)

[

−divξ (ln |ξ| Df(x− ξ)) +

(

ξ

|ξ|2
·Df(x− ξ)

)]

(10)

=

∫

ξ∈∂Br(0)

ln |ξ| Df(x− ξ) ·
ξ

|ξ|
+

∫

ξ∈BR(0)\Br(0)

ξ

|ξ|2
·Df(x− ξ)

= ln r

∫

ξ∈∂Br(0)

Df(x− ξ) ·
ξ

r

+

∫

ξ∈BR(0)\Br(0)

[

−divξ
(

f(x− ξ)
ξ

|ξ|2

)

+ f(x− ξ)div

(

ξ

|ξ|2

)]

= ln r

∫

ξ∈∂Br(0)

Df(x− ξ) ·
ξ

r
+

1

r

∫

ξ∈∂Br(0)

f(x− ξ). (11)

We have used in (10) the calculation of the gradient of ℓ(x) = ln |x| with

Dℓ(x) =
1

|x|
D|x| =

x

|x|2
,

and in (11) we used the fact that the vector field x/|x|2, that is the radial field of
magnitude 1/|x|, is divergence free in two dimensions.
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Starting from (11) we hae two limits to calculate. Recall that f, fx ∈ C3
c (R

3) so
we can write

|Df(x− ξ)| ≤ ‖f‖C1(R2)

for all ξ ∈ R
2 and some fixed finite non-negative number ‖f‖C1(R2). Observe then for

r < 1
∣

∣

∣

∣

ln r

∫

ξ∈∂Br(0)

Df(x− ξ) ·
ξ

r

∣

∣

∣

∣

≤ − ln r

∫

ξ∈∂Br(0)

‖f‖C1(R2) = −2πr ln r‖f‖C1(R2).

It follows that the first term/integral in (11) satisfies

lim
rց0

ln r

∫

ξ∈∂Br(0)

Df(x− ξ) ·
ξ

r
= 0.

The remaining integral can be expressed in terms of an average value:

1

r

∫

ξ∈∂Br(0)

f(x− ξ) =
2π

2πr

∫

ξ∈∂Br(0)

f(x− ξ) = 2π
1

H1(∂Br(x))

∫

Br(x)

f.

This quantity limits to 2πf(x). Thus, we conclude

lim
rց0

1

C
A(r) = 2πf(x).

That is to say,

∆u(x) = Φ ∗∆f(x) = lim
rց0

∫

R2\Br(0)

ln |ξ| ∆f(x− ξ) = 2πCf(x).

Thus, if we want ∆u(x) = −f(x), we should take

C = −
1

2π

and observe that the “real” fundamental solution in n = 2 is (or should be)

Φ(x) = −
1

2π
ln |x|.

While this conclusion is correct and this is the main important piece of information
one is intended to “discover” in the problem, there is a little bit of ambiguity in
the way the question is posed. We were supposed to find a “unique” value for the
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constant C, but we made a choice of the constant c2, namely c2 = 1 which was
essentially arbitrary. Thus, technically speaking, according to the strict wording of
the problem, one can take any nonzero value for c2, and then conclude the constant
Cc2 should take the unique value −1/(2π). There is no properly unique value for the
constant C as the problem is stated, but rather

C = −
1

2πc2

where Φ(x) = c2 ln |x| and c2 6= 0.
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Problem 9 Solve the BVP for Laplace’s equation

{

∆u = 0, x ∈ B1(0, 0) ⊂ R
2

u(x) = x2
1, x = (x1, x2) ∈ ∂B1(0, 0)

using a Green’s function.

Solution: In order to find a Green’s function one can seek a Green corrector uc :
B1(0) → R satisfying











∆uc = 0, on B1(0)

uc(x) = −
1

2π
ln |x− ξ|, x ∈ ∂B1(0).

As in the higher dimensional case, one can consider also the fundamental solution
with singularity translated to the Kelvin transform ξ/|ξ|2 of ξ at least when |ξ| 6= 0.
That is,

u(x) = −
1

2π
ln

∣

∣

∣

∣

x−
ξ

|ξ|2

∣

∣

∣

∣

.

When |x| = 1, we have

∣

∣

∣

∣

x−
ξ

|ξ|2

∣

∣

∣

∣

2

=
1

|ξ|2
(|ξ|2 + 2x · ξ + |x|2) =

|x− ξ|2

|ξ|2
.

We conclude that for |x| = 1,

u(x) = −
1

2π
ln

(

|x− ξ|

|ξ|

)

= Φ(x− ξ) +
1

2π
ln

1

|ξ|

and the function uc ∈ C∞(R2\{ξ/|ξ|2} with values

uc(x) = −
1

2π
ln

∣

∣

∣

∣

x−
ξ

|ξ|2

∣

∣

∣

∣

−
1

2π
ln |ξ| = −

1

2π
ln

∣

∣

∣

∣

|ξ|x−
ξ

|ξ|

∣

∣

∣

∣

is the Green corrector. Thus, the Green’s function for B1(0) satisfies

G(x, ξ) = Φ(x− ξ) +
1

2π
ln

∣

∣

∣

∣

|ξ|x−
ξ

|ξ|

∣

∣

∣

∣

=
1

2π
ln

(

| |ξ|2x− ξ |

|ξ| |x− ξ|

)
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for |ξ| 6= 0. For the purposes of integration on B1(0), these values are adequate,
though one can define also G(x, 0) ≡ 0.

To solve the boundary value problem for u posed above, we consider the alternative
problem

{

∆v = −2 = −∆u0, x ∈ B1(0, 0) ⊂ R
2

v∣
∣

∂B1(0,0)

≡ 0

for Poisson’s equation where u0(x, y) = x2. This problem has solution v ∈ C2(B1(0)
with

v(x) = 2

∫

ξ∈B1(0)

G(x, ξ) =
1

π

∫

ξ∈B1(0)

ln

(

| |ξ|2x− ξ |

|ξ| |x− ξ|

)

.

The solution of the original problem is the function u ∈ C2(B1(0)) with values
u(x, y) = v(x, y) + x2as indicated on the right in Figure 3.

Figure 3: Graph of a harmonic function (∆u = 0) on the unit disk with u(x, y) = x2

when x2 + y2 = 1 (right). On the left is the associated solution of Poisson’s equation
∆v = −2 with homogeneous boundary values.

Changing variables with ξ = (r cos θ, r sin θ) and writing the integral defining v in
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terms of an iterated integral in polar coordinates we find

v(x, y) =
1

π

∫ 1

0

r

∫ 2π

0

ln

(

|(rx− cos θ, ry − sin θ)|

|(x− r cos θ, y − r sin θ)|

)

dθ dr

=
1

π

∫ 1

0

r

∫ 2π

0

ln

√

r2(x2 + y2)− 2r(x cos θ + y sin θ) + 1

x2 + y2 − 2r(x cos θ + y sin θ) + r2
dθ dr

=
1

2π

∫ 1

0

r

∫ 2π

0

ln

(

r2(x2 + y2)− 2r(x cos θ + y sin θ) + 1

x2 + y2 − 2r(x cos θ + y sin θ) + r2

)

dθ dr.

This expression is easier to plot using mathematical software. A plot of the graph
of the function v ∈ C2(B1(0)) satisfying ∆v = −2 with homogeneous boundary
conditions is indicated on the left in Figure 3.

Note: The point of this problem is to give a formula for the solution in terms
of a Green’s function, however, I gave such simple boundary conditions that this
particular problem is easy to solve without a Green’s function. If one takes a look at
the graph of the function v in Figure 3, it looks like an elliptic (circular) paraboloid.
One knows, on the other hand, an elliptic paraboloid with circular cross-section and
formula v(x, y) = a(x2 + y2) has ∆v = 4a, so taking a = −1/2 gives

v(x, y) = −
1

2
(x2 + y2)

which gives the values of v. Then u(x, y) = v(x, y) + x2, so

v(x, y) =
1

x
(x2 − y2).

Again, this is because I picked the boundary inhomogeneity to be so simple. This
kind of thing won’t usually work.
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Problem 10 (hanging slinky) Note that the tension force at each material point
X(h) in the hanging slinky has magnitude m(h)g where g is an appropriate gravita-
tional acceleration constant, e.g., g = 9.8 m/s2 and m(h) is the mass of the portion
of the slinky hanging below X(h). Use this observation to model and graphically
illustrate the observed physical configuration of the hanging slinky.

Solution: I’m going to use MKS units here as suggested by the gravitational constant
above. I’m also going to use some form of my modeling assumption from Problem 10
of Assignment 5 and some measurements associated with Problem 1 of Assignment 4.

From my solution of Problem 10 of Assignment 4 I model the force by

F = γ(σ′ − 1)

where γ is some material constant I don’t have a value for at the moment.
In accord with my solution of Problem 1 of Assignment 3 the mass of the slinky

below σ(h) should be modeled by m(h) = ρ0(h0 − h). Using the suggestion stated in
Problem 10 above, I have an ordinary differential equation for σ:

γ(σ′ − 1) = ρ0g(h0 − h) or σ′ =
ρ0g

γ
h0 + 1−

ρ0g

γ
h. (12)

This is a very easy ODE to integrate:

σ(h) =

(

ρ0g

γ
h0 + 1

)

h−
ρ0g

2γ
h2.

I have taken ρ0 = M/h0 whereM is the total mass and h0 is the stacked/equilibrium
height, so this can also be written as

σ(h) =

(

Mg

γ
+ 1

)

h−
Mg

2h0γ
h2.

I mentioned in my solution of Problem 1 of Assignment 1 that I measured h0 to be
approximately 51 mm = 0.051 m. I do not have a measurement for the exact mass at
the moment, but I found a reference suggesting the value should be about 0.218 kg,
and this seems about right. I can check that later with a lab scale.

This gives me values for all the constants except the elasticity γ. I do have,
however, a measured value for the total length σ(h0) of the hanging slinky at about

L = 40 + 5/8 inches = 1.032 m.
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That measurement comes from data Nicholas Vellenga and I collected in my office.
With this value, we can choose the constant γ for a perfect fit at the endpoint(s) with

γ(σ(h0)− h0) = γ(L− h0) =
Mg

2
h0 or γ

.
= 0.05554.

With this value we obtain a formula for σ and we can compare the prediction with
the collected data. A comparison in terms length of stretch measured in inches as a
function of coil number is indicated in Figure reffig4.

Figure 4: Comparison of stretch for a hanging slinky and a first model prediction.

There are some serious shortcomings of this model, but we can say we have fulfilled
some of the features of mathematical modeling in physical science:

1. There is some understanding behind the parameters and equations in the
model.

2. The model is capable of prediction.

3. The prediction has been compared to measurement of the physical system.

In short, we are not just “fitting data” which is what often passes for mathematical
modeling but is actually something else. Ruling out blind “data fitting,” a good
standard for mathematical modeling is the following:

One can say that a mathematical model accurately models a physical
phenomenon if the agreement of the prediction of the model is as good as
the precision of measurement. That is, the magnitude of the error is at
least as small as the known error in measurement of the physical system.
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We have clearly not achieved this level of accuracy, which indicates there are funda-
mental things we either have not incorporated in the model, do not yet understand,
or have incorrectly applied in the modeling. In this case all three of these sources
of error are probably present making for what one can clearly identify as a “crude”
mathematical model. Specifically,

1. We have not taken account of the error associated with the first coil thickness.
This is somehthing we know about but have not incorporated.

2. The basic shape of the curve is not correct, indicating that we do not have the
constituitive force relation correct. Something more complicated is happening
with the force that we do not yet understand.

3. Determination of the constant γ by using the matching of one point is not
ideal and probably does not give a very accurate value. Of course, the fact
that the basic shape is incorrect strongly suggests one should understand the
physical system better—perhaps the introduction of a single elasticity constant
is an error—before attempting to improve the determination of such a constant.
But if one did have a nominally “correct” model, then using a least squares fit
incorporating all the data to determine unknown constants would be a more
reasonable thing to do.
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