
Math 6702, Assignment 6

First Order Linear PDE

Consider the first order linear PDE

aux + buy + cu = f (1)

for a function u ∈ C1(U) where U is an open subset of R
2 and the coefficients satisfy

a, b, c, f ∈ C0(U). We wish to consider several aspects of the study of this equation. For
these exercises, let us assume U contains the segment I = {(x, 0) : x1 ≤ x ≤ x2} on the
x-axis.

1. Assume that for each f0 ∈ C0(U), you can find a function v ∈ C1(U) for which

{

avx + bvy + cv = f0
v∣
∣

I

≡ 0. (2)

Show that you can then solve

{

aux + buy + cu = f
u∣
∣

I

≡ u0
(3)

for any f ∈ C1(U) and u0 = u0(x) with u0 ∈ C1[x1, x2]. This is called the Cauchy

problem for (1). Hint(s): Draw a picture showing how the domain U and the segment
I might look. Find an extension of u0 to all of R.

2. Let x0 ∈ (x1, x2) and consider a C1 path r : (−1, 1) → U with r(0) = (x0, 0).

(a) Draw a picture of how U and the image of r might look assuming r′(0) 6= 0.

(b) Compute the derivative of the composition

d

dt
[u ◦ r(t)] where u ∈ C1(U).

You will need to use the chain rule (Chapter 5 section 4 of Boas).

(c) Compare your result from the computation in part (b) to the PDE (1). Give a
condition on the path r of the form

r′(t) = (4)

which allows you to relate the computation in part (b) to the PDE.

(d) Under what circumstances does there exist a unique solution to (4)?

§4.8 Max/Min Problems

3. (4.8.1) Let f ∈ C2(a, b) and x0 ∈ (a, b). Use the Taylor approximation formula to show
that if f ′(x0) = 0 and f ′′(x0) > 0, then f has a local minimum at x = x0.



4. (4.8.2) Let f ∈ C2(U) where U is open and (x0, y0) ∈ U ⊂ R
2.

(a) Use the second order Taylor approximation formula to show that if Du(x0, y0) = 0,
fxx(x0, y0) > 0, fyy(x0, y0) > 0, and fxx(x0, y0)fyy(x0, y0) > [fxy(x0y0)]

2, then f has
a local minimum at (x, y) = (x0, y0).

(b) Use the second order Taylor approximation formula to show that even ifDu(x0, y0) =
0, fxx(x0, y0) > 0, and fyy(x0, y0) > 0, it may be the case that f does not have a
local minimum at (x, y) = (x0, y0). (Give an explicit example.)

(c) Is if possible that Du(x0, y0) = 0, fxx(x0, y0) > 0, and fyy(x0, y0) > 0, and f has a
local maximum at (x, y) = (x0, y0)?

(d) An n× n matrix M is positive definite if

Mx · x ≥ 0 for all x ∈ R
n

and equality holds only if x = 0 ∈ R
n. This condition on a matrix is also expressed

by writing “M > 0.” The Hessian matrix of u is given by

D2u =

(

fxx fxy
fxy fyy

)

.

Show D2u is positive definite if and only if fxx > 0, fyy > 0, and detD2f =
fxxfyy − f 2

xy > 0.

5. (4.8.16) Let (x1, y1), (x2, y2), . . . , (xk, yk) be a set of data points which are expected to
satisfy an affine relation y = mx+ b.

(a) Let

ǫ =

k
∑

j=1

[yk − (mxk + b)]2

be the sum of the squares of the errors associated with each data point. Minimize
ǫ = ǫ(m, b). The resulting affine function is called the least squares fit.

(b) Find the least squares fit for (−1,−2), (0, 0), and (1, 3).

(c) Plot the points from part (b) along with the affine least squares fit.

§5.2 Area and Volume Integrals

6. (5.2.9) Let A = {(x, y) ∈ R
2 : 0 < y < 2χ(0,π/2)(x) + 4χ(π/2,π)(x)}. Calculate

∫

A

sin x.

The function χE : R
n → R is called the characteristic function of the set E ⊂ R

n. It
has values given by

χE(x) =

{

1, x ∈ E
0, x /∈ E.



7. (5.2.11) Let B = {(x, y) : x2 < y < 2x+ 8}. Calculate

∫

A

x

8. (5.2.48,50) Let V be the volume in the first octant bounded by the cone z2 = x2 − y2

and the plane x = 4.

(a) Compute
∫

V

1.

(b) If V models a solid object with density δ(x, y, z) = z, determine the mass of the
object according to the model.


