First Order Linear PDE

Consider the first order linear PDE

$$au_x + bu_y + cu = f \tag{1}$$

for a function $u \in C^1(U)$ where U is an open subset of \mathbb{R}^2 and the coefficients satisfy $a, b, c, f \in C^0(\overline{U})$. We wish to consider several aspects of the study of this equation. For these exercises, let us assume U contains the segment $I = \{(x, 0) : x_1 \leq x \leq x_2\}$ on the x-axis.

1. Assume that for each $f_0 \in C^0(\overline{U})$, you can find a function $v \in C^1(\overline{U})$ for which

$$\begin{cases} av_x + bv_y + cv = f_0 \\ v_{\mid_I} \equiv 0. \end{cases}$$
(2)

Show that you can then solve

$$\begin{cases}
au_x + bu_y + cu = f \\
u_{\mid_I} \equiv u_0
\end{cases}$$
(3)

for any $f \in C^1(\overline{U})$ and $u_0 = u_0(x)$ with $u_0 \in C^1[x_1, x_2]$. This is called the **Cauchy problem** for (1). Hint(s): Draw a picture showing how the domain U and the segment I might look. Find an extension of u_0 to all of \mathbb{R} .

- 2. Let $x_0 \in (x_1, x_2)$ and consider a C^1 path $\mathbf{r} : (-1, 1) \to U$ with $\mathbf{r}(0) = (x_0, 0)$.
 - (a) Draw a picture of how U and the image of **r** might look assuming $\mathbf{r}'(0) \neq 0$.
 - (b) Compute the derivative of the composition

$$\frac{d}{dt}[u \circ \mathbf{r}(t)] \qquad \text{where} \qquad u \in C^1(\overline{U}).$$

You will need to use the chain rule (Chapter 5 section 4 of Boas).

(c) Compare your result from the computation in part (b) to the PDE (1). Give a condition on the path \mathbf{r} of the form

$$\mathbf{r}'(t) = \underline{\qquad} \tag{4}$$

which allows you to relate the computation in part (b) to the PDE.

(d) Under what circumstances does there exist a unique solution to (4)?

§4.8 Max/Min Problems

3. (4.8.1) Let $f \in C^2(a, b)$ and $x_0 \in (a, b)$. Use the Taylor approximation formula to show that if $f'(x_0) = 0$ and $f''(x_0) > 0$, then f has a local minimum at $x = x_0$.

- 4. (4.8.2) Let $f \in C^2(U)$ where U is open and $(x_0, y_0) \in U \subset \mathbb{R}^2$.
 - (a) Use the second order Taylor approximation formula to show that if $Du(x_0, y_0) = 0$, $f_{xx}(x_0, y_0) > 0$, $f_{yy}(x_0, y_0) > 0$, and $f_{xx}(x_0, y_0)f_{yy}(x_0, y_0) > [f_{xy}(x_0y_0)]^2$, then f has a local minimum at $(x, y) = (x_0, y_0)$.
 - (b) Use the second order Taylor approximation formula to show that even if $Du(x_0, y_0) = 0$, $f_{xx}(x_0, y_0) > 0$, and $f_{yy}(x_0, y_0) > 0$, it may be the case that f does not have a local minimum at $(x, y) = (x_0, y_0)$. (Give an explicit example.)
 - (c) Is if possible that $Du(x_0, y_0) = 0$, $f_{xx}(x_0, y_0) > 0$, and $f_{yy}(x_0, y_0) > 0$, and f has a local maximum at $(x, y) = (x_0, y_0)$?
 - (d) An $n \times n$ matrix M is **positive definite** if

$$M\mathbf{x} \cdot \mathbf{x} \ge 0$$
 for all $\mathbf{x} \in \mathbb{R}^n$

and equality holds only if $\mathbf{x} = \mathbf{0} \in \mathbb{R}^n$. This condition on a matrix is also expressed by writing "M > 0." The **Hessian matrix** of u is given by

$$D^2 u = \left(\begin{array}{cc} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{array}\right).$$

Show $D^2 u$ is positive definite if and only if $f_{xx} > 0$, $f_{yy} > 0$, and $\det D^2 f = f_{xx}f_{yy} - f_{xy}^2 > 0$.

- 5. (4.8.16) Let $(x_1, y_1), (x_2, y_2), \ldots, (x_k, y_k)$ be a set of data points which are expected to satisfy an affine relation y = mx + b.
 - (a) Let

$$\epsilon = \sum_{j=1}^{k} [y_k - (mx_k + b)]^2$$

be the sum of the squares of the errors associated with each data point. Minimize $\epsilon = \epsilon(m, b)$. The resulting affine function is called the **least squares fit**.

- (b) Find the least squares fit for (-1, -2), (0, 0), and (1, 3).
- (c) Plot the points from part (b) along with the affine least squares fit.

§5.2 Area and Volume Integrals

6. (5.2.9) Let
$$A = \{(x, y) \in \mathbb{R}^2 : 0 < y < 2\chi_{(0, \pi/2)}(x) + 4\chi_{(\pi/2, \pi)}(x)\}$$
. Calculate
$$\int_A \sin x.$$

The function $\chi_E : \mathbb{R}^n \to \mathbb{R}$ is called the **characteristic function** of the set $E \subset \mathbb{R}^n$. It has values given by

$$\chi_E(\mathbf{x}) = \begin{cases} 1, & x \in E \\ 0, & x \notin E. \end{cases}$$

7. (5.2.11) Let $B = \{(x, y) : x^2 < y < 2x + 8\}$. Calculate

$$\int_A x$$

- 8. (5.2.48,50) Let V be the volume in the first octant bounded by the cone $z^2 = x^2 y^2$ and the plane x = 4.
 - (a) Compute

$$\int_V 1.$$

(b) If V models a solid object with density $\delta(x, y, z) = z$, determine the mass of the object according to the model.