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Multivariable Calculus

Problem 1 Recall that a path connecting two points p and q in R
n is a continuous

function r : [a, b] → R
n such that r(a) = p and r(b) = q.

(a) Given a path connecting p to q, prove there is a path γ : [0, 1] → R
n connecting

p to q with γ(0) = p and γ(1) = q.

(b) Use mathematical software to produce a drawing like the one below with a secant
vector connecting two points on a parameterized curve. Be sure to indicate the
formula for the curve you have illustrated.

(c) Explain why the derivative

r′(t) = lim
h→0

r(t+ h)− r(t)

h
,
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if it exists, is a vector with norm giving the instantaneous rate of change of
position along the curve with respect to t. Hint: Your answer should have the
notion of average speed in it somewhere.

(d) Recall that a path r connecting two points is C1 if the coordinate functions
r1, r2, . . . , rn are C1. Show that if there is a C1 path connecting two points,
then there is a unit speed path connecting the two points. This means, we can
assume |r′(t)| = 1 for all t.

Problem 2 Let u : R2 → R by

u(x, y) =

{

xy/(x2 + y2), (x, y) 6= (0, 0)
0, (x, y) = (0, 0).

Show the first order partials of u both exist at every point of R2, but u is not continuous
at (0, 0).

Differentiability

A function u : U → R with U an open subset of Rn and p ∈ U is differentiable
at p if there is a linear function L : Rn → R such that

lim
w→0

u(p+w)− u(p)− L(w)

|w|
= 0. (1)

The linear map L : Rn → R is called the differential of u at p and is denoted by
dup : Rn → R.

Problem 3 Let u : U → R be differentiable at p ∈ U .

(a) show the first partial derivatives Dju(p) exist for j = 1, 2, . . . , n.

(b) Express the linear function L : R
n → R for which (1) holds in terms of the

gradient vector

Du(p) = (D1u(p), D2u(p), . . . , Dnu(p)).
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(c) Let U = (0, 1)× (0, 1) ⊂ R
2 and consider the specific function u : U → R by

u(x, ξ) =

{

x(1− ξ), 0 ≤ x ≤ ξ
(1− x)ξ, ξ ≤ x ≤ 1.

Determine the points in U at which u is differentiable.

(d) Let u be the specific function given in the last part of this problem. Reexpress u
in the form

u(x, ξ) =

{

u1(x, ξ), 0 ≤ ξ ≤ x
u2(x, ξ), x ≤ ξ ≤ 1.

(e) What can you say about the regularity of the specific function u from the previous
two parts? Hint: You can start by showing u ∈ C0(U). You can also find some
subdomains U1 and U2 of U on which the functions u1 and u2 are C∞.

Note: The funtion u given in the last two parts of this problem is (up to a scaling)
the Green’s function for the 1-D Laplacian ∆u = u′′.

PDE

Green’s Function for Laplacian

Assume for the following problem that U is a bounded open subset of Rn and
you can solve for every f ∈ C2(U) the boundary value problem

{

∆v = f on U ,
v∣
∣

∂U

≡ 0. (2)

Problem 4 Consider the boundary value problem

{

∆u = 0 on U ,
u∣
∣

∂U

= g. (3)

(a) If g ∈ C∞(Rn), find the solution of (3) in terms of a solution of (2).
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(b) The harmonic corrector function is a solution h(x) = h(x,w) of (3) for the
particular choice g(x) = Φ(x − w) where w ∈ U and Φ is the fundamental
solution. The function g : Rn\{w} given by g(x) = Φ(x − w) is, of course,
not in C∞(Rn), so your solution from part (a) does not work immediately to
give the harmonic corrector. Nevertheless, use part (a) to find the harmonic
corrector in terms of a solution of (2). Hint(s): Remember the proof of the
higher regularity theorem.

Problem 5 Find the corrector h(x) = φ(x,w) and hence the Green’s function for
the following domains.

(a) U = {x ∈ R
n : x = (x1, x2, . . . , xn) and xn > 0}. Hint: The fundamental solution

Φ(z− w̃) with singularity at a point w̃ outside the halfspace U has the correct
boundary values.

(b) U = Br(0) ⊂ R
2. Initial hint: The fundamental solution Φ(z − w̃) with singu-

larity at a point outside the ball has the right boundary values. (Find that point
w̃.) Actually, this is not quite true,1 but it’s a good starting point. Note the
form such a point w̃ would have to have, and then try the following:

(i) Given a singularity point w̃ outside Br(0), a function of the form

h(x) = Φ(β(x− w̃))

is also harmonic on Br(0). (And you can choose β and w̃ so that this
function h has the correct boundary values.)

(ii) That is, you want

Φ(β(x− w̃)) = Φ(x−w) for all x with |x| = r.

(iii) Since Φ depends on the modulus of the argument, the previous condition
means

β|x− w̃| = |x−w|. (4)

Square both sides. You can assume β > 0. You should have/know that
given w, w̃ depends on one positive constant α (along with w). Choose a
relation between α and β so that the middle terms on the left and right in
(4) agree (and cancel each other). This will give you a quadratic equation
for α. Solve that equation.

1You can’t find such a point.

4



(iv) At this point, you may think you have found the harmonic corrector and
essentially solved the problem. Solving the quadratic equation, however,
depends on the assumption w 6= 0. If you didn’t notice this unfortunate
circumstance already, go back and consider the case w = 0 as a separate
case.

Problem 6 Let U = (0, ln 2)× (0, π). Assume you can solve

{

∆w = (1 + x/ ln 2) sin y,
w∣
∣

∂U

≡ 0. (5)

Use the solution of this problem to solve

{

∆u = 0,
u∣
∣

∂U

≡ (1 + x/ ln 2) sin y. (6)

Other Second Order Linear Operators

Problem 7 Show each of the following operators is linear on an appropriate function
space of real valued functions.

(a) (anisotropic Laplacian)

A[u] =

n
∑

j=1

aj(x)D
2eju.

Here, we are using multi-index notation for derivatives and ej is the j-th stan-
dard unit basis vector. Note: We should also require aj : U → R for j = 1, . . . n
are given positive functions on some domain U ⊂ R

n. You may further re-
strict the coefficients aj = aj(x) in order to determine/specify the codomain W
of this operator. The isotropic spacial case a1 = a2 = · · · = an ≡ 1 of this
operator gives the Laplacian

∆u = ∇2u =

n
∑

j=1

∂2u

∂x2

j

.
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(b) (heat operator)
H [u] = ut − k∆u.

Here the positive constant k = α2 is called the diffusivity, and the operator is
also called the diffusion operator.

(c) (wave operator)
�u = utt − k∆u.

Here the positive constant k = c2 is called the square of the propogation
speed. The wave operator is also sometimes called the D’Alembertian after
Jean D’Alembert.

Fourier Series

Let f : [0, L] → R be a continuous function. A Fourier sine series for f has the
form

f(x) =
∞
∑

j=1

fj sin
jπx

L
. (7)

where the numbers f1, f2, f3, . . . are called the Fourier coefficients of f and the
functions sin(πx/L), sin(2πx/L), sin(3πx/L),. . .make up what is called the Fourier
sine basis. We do not need to worry too much about convergence of the series.
For a continuous function, if the coefficients are chosen correctly, then the series will
converge to f(x) at least on (0, L), and we can manipulate the series, at least as far
as integrating term by term, pretty freely.

Problem 8 This problem is about computing Fourier coefficients.

(a) Compute
∫ L

0

sin
jπx

L
sin

kπx

L
dx.

Hint: Something special happens when j = k because (you can show)

∫ L

0

sin2
jπx

L
dx =

∫ L

0

cos2
jπx

L
dx and sin2

jπx

L
+ cos2

jπx

L
= 1.

Something even more special happens when j 6= k.
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(b) Multiply both sides of (7) by sin(kπx/L) and integrate both sides from x = 0 to
x = L. Use the result to find a formula for the Fourier coefficients.

(c) Consider the specific example f : [0, L] → R by

f(x) =

{

bx/a, 0 ≤ x ≤ a
b(x− L)/(a− L), a ≤ x ≤ L.

Draw the graph {(x, f(x)) : 0 ≤ x ≤ L} of f . What can you say about the
regularity of f?

(d) Let f be the specific function from the last part of this problem. Find the Fourier
sine series expansion of f .

(e) The trigonometric polynomial

Pn(x) =
n

∑

j=1

fj sin
jπx

L

is (called) the n-th Fourier sine approximation of f . Use mathematical soft-
ware (Matlab, Mathematica, Maple, etc.) to plot P1(x), P2(x), P3(x), P10(x),
and P100(x) for the specific example from the last two parts. Suggestion from
Ching-Lun Tai: The parameter choice (a, b, L) = (3, 1, 10) is a good one (leading
to results that are relatively easy to interpret).
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Separation of Variables; Superposition

Consider the following boundary value problem for Laplace’s equation on the
rectangle U = [0, L]× [0,M ] where L and M are positive numbers.

{

∆u = 0,
u(x, 0) = 0, u(L, y) = 0, u(x,M) = x(x− L), u(0, y) = 0

(8)

Problem 9 (a) Find all separated variables solutions u(x, y) = A(x)B(y). Hint:
You should obtain solutions of the form uj = cjAj(x)Bj(y) with A′′

j = −λjAj

and B′′

j = λjBj for some positive increasing sequence

0 < λ1 < λ2 < λ3 < · · · .

(b) Find a Fourier expansion of the function g3(x) = x(x − L) and choose the con-
stants c1, c2, c3, . . . appropriately so that

∞
∑

j=1

cjBj(M)Aj(x) = g3(x).

(c) Take the specific values L = 1 and M = 0.5 and plot enough terms of

u(x, y) =

∞
∑

j=1

cjAj(x)Bj(y)

to convince yourself (and me) that you have obtained a series solution for the
problem.
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First Order Cauchy Problem

Consider the following initial/boundary value problem:







∂w

∂x
+

∂w

∂y
= 0 on U ,

u∣
∣

I

= g
(9)

for a function w = w(x, y) defined on an open subset U of R2 containing the segment
I = {(x, 0) : 0 ≤ x ≤ L}.

Problem 10 Let r : [0, ℓ] → R
2 be a smooth path.

(a) Compute
d

dt
w(r(t)) (10)

where w ∈ C1(U).

(b) Compare your result from the computation of part (a) to the PDE (9). Choose
the path r with r(0) = (x0, 0) ∈ I such that the PDE tells you the expression in
(10) vanishes (if w solves the PDE). What does this tell you about the values of
a solution w along that path?

(c) If g ∈ C1[0, L], find a solution w ∈ C1(V ) of (9) on some open set V ⊃ I. Is it
always possible to extend this solution to all of U? Why or why not? If there is
an extension, is it always unique?
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