
Assignment 5:

Integration and Green’s function

Due Friday, February 28, 2025

John McCuan

March 13, 2025

Problem 1 (Slinky and forces) Tension forces associated with homogeneous exten-
sions of a spring (like a slinky) are sometimes modeled using a Hooke’s constant.

(a) Assume the mapping σ : [0, h0] → [0, h1] models a homogeneous extension of a
slinky of stacked/equilibrium height h0 to an extended height h1 > h0. Find an
explicit formula for the model measurement function σ.

(b) Assume this slinky has Hooke’s constant k so that an internal tension in the coils
of magnitude kx is associated with an extension of length x. If the slinky is cut
in half to make two identical slinkys of stacked/equilibrium height h0/2 what is
the Hooke’s constant associated with one of these two shorter slinkys?

(c) What does the answer to the question in (b) about tell you about Hooke’s con-
stant?

Solution:

(a) σ(h) = (h1/h0)h.

(b) I assume σ0(h) ≡ h, the identity function, is an equilibrium. Then for the
homogeneous extension to length h1, the displacement of the end of the slinky
from equilibrium has value x = h1 − h0. Thus, the corresponding tension force
in the coils should be

F1 = k(h1 − h0).
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If I take half of this slinky, then the stacked height should be h0/2, and the same
density of coils (and hence the same tension force) should be attained when the
slinky is extended to a length h1/2. If I assume the same Hooke’s constant k,
then the displacement of the half end is x̃ = h1/2 − h0/2 = (h1 − h0)/2, and
the force should be

F̃ = k
h1 − h0

2
,

but this is not correct because I just said the density of the coils should be the
same as for the initial extension of the original long slinky. This means I should
have/get

F1/2 = k(h1 − h0) = (2k)
h1 − h0

2

when the displacement of the half-slinky is (h1 − h0)/2.

(c) Number one, the Hooke’s constant for the half-slinky is not the same as the
Hooke’s constant for the original slinky even though they are of the same ma-
terial. The Hooke’s constant for the half-slinky is twice that of the original
long slinky. This tells me Hooke’s constant is not a contant determined by the
materials. That is to say Hooke’s constant is not a material constant.
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Problem 2 (hypersurface) Consider n ∈ {2, 3, 4, . . .} and U ⊂ R
n−1 an open set.

A function X ∈ C1(U → R
n) is said to parameterize an embedded hypersurface

S = X(U) if the following hold:

(i) X is one-to-one.

(ii) X−1 ∈ C0(S → U).

(iii) The differential map dXp : Rn−1 → R
n with values given by

dXp(v) = DX(p)v

satisfies dXp is one-to-one for each p ∈ U .

(a) Show X : R2 → R
3 by X(u, v) = (u, v, au + bv) parameterizes an embedded

hypersurface for every a, b ∈ R.

(b) Say f : P → R is a real valued function defined on the hypersurface P = X(R2)
with X given in (a) above. Express

∫

A

f

where A is a domain of integration in S in terms of an integral over a set in R
2.

(c) Consider f : Γ → R by f(x, y) = 1/x3 where Γ = {(x, x2) : x ∈ (1,∞)}. Find

∫

Γ

f.
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Problem 3 (flux integral) Consider a smooth vector field v : Ω → R
n where Ω is

an open subset of Rn. If S is a smooth hypersurface passing through p ∈ Ω with
orientation field n : S → R

n by which we mean n ∈ C1(S → R
n) and

dXp(v) · n ◦X−1(X(p)) ≡ 0 for all p ∈ U and v ∈ R
n−1,

we define the flux integral of v over S to be

∫

S

v · n.

(a) Express the flux integral as an integral over U .

(b) Imagine a fluid of constant mass density ρ flowing at all points with a constant
velocity in a fixed constant direction. This is sometimes called uniform flow.
Taking the special case n = 3 and modeling a constant fluid velocity field by
v = ve1 : R

3 → R
3 where the constant v has physical dimension given by

[v] =
L

T
.

Give an expression for the rate of mass flow through the “window”

S = {a(− sin θ, cos θ, 0) + b(− cos φ cos θ,− cosφ sin θ, sinφ) : |a|, |b| < ǫ}

(c) Calculate
∫

S

v · n

where n = (sinφ cos θ, sinφ sin θ, cosφ).
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Problem 4 Define the divergence of a smooth vector field v : Ω → R
2 to be the

function div : Ω → R with value given by the limit

div v(p) = lim
ǫց0

1

vol(Cǫ(p))

∫

∂Cǫ(p)

v · n

where Cǫ(p) = {x ∈ R
2 : |xj − pj | < ǫ, j = 1, 2} is the cube/square of sidelength 2ǫ

centered at p.

(a) Express the flux integral around ∂Cǫ(p) as the sum of the four flux integrals over
the sides.

(b) Group the terms involving integrals over opposite sides.

(c) Use the mean value theorem and take the limit(s).
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Problem 5 (product formula) Use the formula obtained in Problem 4 above to es-
tablish the product formula for the divergence of a scaled field: If v ∈ C1(Ω → R

2)
and f ∈ C1(Ω), then

div(fv) = Df · v + f div v.

Solution: Let v = (v1, v2). From the Problem 4

div v =
∂v1
∂x1

+
∂v2
∂x2

.

This means

div(fv) =
∂

∂x1

(fv1) +
∂

∂x2

(fv2).

Notice that for j = 1, 2
∂

∂xj

(fvj) =
∂f

∂xj

vj + f
∂vj
∂xj

.

This is just the product rule for real valued functions from Calculus I. Summing over
j gives

div(fv) =
∂f

∂x1
v1 +

∂f

∂x2
v2 + f

(

∂v1
∂x1

+
∂v2
∂x2

)

= Df · v + f div v

as claimed.
There is nothing particularly special about n = 2. In rectangular coordinates in

R
n we have for a vector field v : Ω → R

n

div v =

n
∑

j=1

∂vj
∂xj

.

Therefore,

div(fv) =

n
∑

j=1

∂

∂xj
(fvj)

=
n

∑

j=1

(

∂f

∂xj

vj + f
∂vj
∂xj

)

=

n
∑

j=1

∂f

∂xj
vj + f

n
∑

j=1

∂vj
∂xj

= Df · v + f div v.
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Problem 6 (Green’s formula) Use the product formula for the divergence and the
divergence theorem to show Green’s formula in the plane: If u, v ∈ C2(Ω) where
Ω ⊂ R

2 is a bounded domain of integration and ∂Ω is a smooth curve, then

∫

Ω

(u∆v − v∆u) =

∫

∂Ω

(uDv − vDu) · n

where n is the outward unit normal field on ∂Ω.
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Problem 7 (fundamental solution of Laplace’s equation when n = 2) Let Φ =
C ln |x| with C < 0 and consider f ∈ C3

c (R
2). Let u : R2 → R by

u(x) =

∫

ξ∈R2

Φ(x− ξ)f(ξ). (1)

(a) Change variables to show

u(x) =

∫

η∈R2

Φ(η) f(x− η). (2)

State explicitly the chage of variables map and explain/compute the Jacobian
scaling factor.

Note: Sometimes the convolution integral considered here is denoted Φ ∗ f(x).
Thus, this exercise establishes the commutativity of this convolution: Φ ∗ f =
f ∗ Φ.

(b) Show u is partially differentiable and find a formula for

∂u

∂xj
.

Hint, use (2) to take a limit of difference quotients.

(c) Find a formula for the Laplacian of u.

Problem 8 What happens if you use the formula (1) instead of (2) in Problem 7 to
compute

∂u

∂xj

?
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Problem 9 (fundamental solution n = 1) Consider Laplace’s equation u′′ = 0 for
u ∈ C∞(R\{0}). Find all solutions that are “radial” in the sense that they are even
with u(−x) = u(x).

Solution: If u′′ = 0, then integrating from r = 1 we have

u′(r) = u′(1) +

∫ r

1

0 dt ≡ u′(1)

is constant. Integrating again from r = 1 we see

u(r) = u(1) + u′(1)(r − 1) = u(1)− u′(1) + u′(1)r.

This function is of the form u(r) = ar + b where a = u′(1) and b = u(1) − u′(1).
Every solution must have this form for some a, b ∈ R and r > 0. If the solution is
even, then

u(x) = a(−x) + b,

so in general there is a two parameter family of solutions given by

u(x) =

{

b+ ax, x ≥ 0
b− ax, x ≤ 0.

Or

u(x) =
ax2

|x|
+ b = a|x|.

Note that these solutions satisfy u ∈ C∞(R\{0}) and even u ∈ Cω(R\{0}). Each
extends to a function in C0(R)∩Lip(R), but the extension is in C1(R) only if u′(1) =
a = 0. In this case, the radial solution is constant, just like in higher dimensions.
Thus, the interesting radial solutions are given by

u(x) = C|x|

for some nonzero constant C. Finally, the fundamental solution for n = 1 returns to
the pattern

Φ(x) =
C

|x|n−2

familiar from the case n ≥ 3. This perhaps suggests consideration of the constant

C =
1

n(n− 2)ωn
= −

1

2

when n = 1.
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Problem 10 (Slinky and forces) Consider again homogeneous extensions σ : [0, h0] →
[0, h1] of a slinky as discussed in Problem 1 above.

(a) Give an intuitive explanation for why the internal tension force might reasonably
depend on the density of coils in the homogeneous extension.

(b) Starting with the Hooke’s constant model, express the tension force in terms of
the natural quantity used to express the density of coils in terms of σ.

(c) Define a material constant with which you can express the tension force and
remains the same for the half slinkys of Problem 1 above.

Solution:

(a) The “density”of the coils is directly related to the deformation of the coil from the
equilibrium/stacked state. In particular, lower density corresponds to greater
deformation from the equilibrium, and should be expected to correspond to
greater tension.

(b) From Assignment 3, Problem 1 one has a linear density function ρ : [0, h0] → R

given by

ρ(x) =
ρ0

σ′(x)

where ρ0 is the constant equilibrium density. Also, we have a coil density
ρc : [0, h0] → R with

ρc(x) =
1

mc

ρ(x)

wheremc is the mass of one coil. Clearly, we can use either of these density func-
tions as they are proportional to one another. If we start with a homogeneous
deformation for which

F1 = k(h1 − h0)

as in Problem 1 above and note that σ(h) = (h1/h0)h, then we can write

F1 = kh0

(

h1

h0
− 1

)

= kh0(σ
′ − 1).

Here of course σ′ ≡ h1/h0 is constant, but notice at least that for the half spring

F1 = kh0(σ
′ − 1)
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gives the correct force formula also for the deformation σ̃ : [0, h0/2] → R of the
half slinky with σ̃(h) = (h1/h0)h maintaining the same density and density of
coils.

(c) This suggests the introduction of a material (elastic) constant γ with value γ =
kh0 for any slinky of this material, and we can then either derive the force law

F = γ(σ′ − 1)

for homogeneous deformations or take the general law

F = γ(σ′(x)− 1)

for the tension force of any deformation as the defining relation for the material
constant γ.

One has a few choices at this point, based on this model approach. One can
attempt to look more carefully at the physical structure of the slinky to model
the value of the material constant γ in some way. One may also take various
approaches to use data to obtain an optimal or “best” choice of γ. One of the
simplest versions of this involves using one measurement, namely the full length
of the hanging slinky.
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