
MATH 6702 Assignment 5

Due Monday April 5, 2021

John McCuan

April 2, 2021

Multivariable Calculus

Problem 1 (Balls and Spheres) Here we denote the n-dimensional Lebesgue measure
of B1(0) ⊂ R

n by ωn, so that

Ln(Br(p)) = ωnr
n.

See Part (b) below. You are probably familiar with the formulas

L2(Br(p)) = πr2

for the area of a disk in R
2 and

L3(Br(p)) =
4

3
πr3

for the volume of a ball in R
3 corresponding to ω2 = π and ω3 = 4π/3. You may not

have thought about it before, but you can easily guess (or figure out) ω1; see Part (a)
below. I’ll guess you do not know the formula for the four-dimensional volume of
{(x, y, z, w) ∈ R

4 : x2+ y2+ z2+w2 < r2}. After completing this problem, you should
be able to compute the volumes of all such balls and understand the formula for them.
I will give you some of the answers, so you will know you have the answer correct:
Ln(Br(p)) = ωnr

n where Br(p) ⊂ R
n and

ω4 =
1

2
π2, ω5 =

8

15
π2, ω6 =

1

6
π3, ω7 =

16

105
π3, . . .

I think this is quite an interesting sequence.
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(a) What is ω1 the one-dimensional (length) measure of the ball of radius r = 1 in
R

1?

(b) Assuming Ln(B1(0)) = ωn use an appropriate change of variables to prove

Ln(Br(p)) = ωnr
n.

We’re going to compute some auxiliary integrals which are important themselves. The
first one is the integral of the Gaussian distribution on R

n.

(c) Use the polar coordinates map on R
2 to show

∫

(x,y)∈R2

e−(x2+y2) = π.

(d) Use Fubini’s theorem to conclude
∫

x∈R

e−x2

=

∫ ∞

−∞

e−x2

dx =
√
π and

∫

x∈Rn

e−|x|2 = πn/2.

Next we will find something about the (n − 1)-dimensional measure of the boundary
of the ball Br(p) ⊂ R

n. This is called Hausdorff measure, and you know

H1(∂Br(p)) = 2πr for Br(p) ⊂ R
2

and
H2(∂Br(p)) = 4πr2 for Br(p) ⊂ R

3.

(e) Use generalized polar coordinates to show

Hn−1(∂B1(0)) = nωn so that Hn−1(∂Br(p)) = nωnr
n−1.

(f) Compute the integral of the Gaussian distribution using generalized polar coordi-
nates to show

∫

x∈Rn

e−|x|2 =
nωn

2

∫ ∞

0

e−t t
n

2
−1 dt.

We see that combining parts (f) and (d) we obtain a formula for ωn in terms of the
integral

Γ(x) =

∫ ∞

0

e−t tx−1 dt.

This is the other special integral we want to study. It’s called the “Gamma function,”
and we can consider it for x > 0.
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(g) Show that Γ(1) = 1 and Γ(1/2) =
√
π.

(h) Integrate by parts to show Γ(x+ 1) = xΓ(x).

(i) Show by induction that Γ(m) = (m− 1)! for m = 1, 2, 3, . . . and

Γ

(

2k + 1

2

)

= Γ

(

1

2
+ k

)

=
(2k − 1)(2k − 3) · · ·1

2k
√
π

where (2k − 1)(2k − 3) · · ·1 is the product of the first k odd natural numbers.

(j) Find a general formula for ω2k when k = 0, 1, 2, . . .. Your answer should be
simplified enough so that it involves only an integer power of π and a factorial.

(k) Find a general formula for ω2k+1 when k = 0, 1, 2, . . .. Your answer should involve
an integer power of 2π and the product of the first k + 1 odd integers.

(l) Check your formulas with the values given for ωn with n = 1, 2, . . . , 7 given above.

(m) Draw pictures illustrating Ln(B1(0)) and Hn−1(∂B1(0)) for the first four mean-
ingful dimensions. Hint: You should get seven pictures.
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PDE

Weak Solutions

Okay, let’s warm up to this idea with ODEs, and we’re going to use just about the
simplest ODE you can imagine. If u ∈ C1(a, b) is a solution of the first order ODE

Φ(x, y, u′) = 0,

then we say u is a classical solution. This, of course, means you can substitute
u into the ODE and it satisfies the condition. We want to say what it means for a
function u ∈ C0(a, b) (or maybe a function with even less regularity) to satisfy an
ODE in certain situations.

For example, u ∈ C0(a, b) is a weak solution of the ODE u′ = 0 if

∫ b

a

u(x)φ′(x) dx = 0 for all φ ∈ C∞
c (a, b). (1)

Problem 2 (a) Find all classical solutions of the ODE u′ = 0.

(b) Show that if u ∈ C1(a, b) is a classical solution of u′ = 0, then (1) holds, that is,
u is a weak solution.

(c) Now, we want to show that if u ∈ C0(a, b) is a weak solution of u′ = 0, then u is
a classical solution you found in part (a). Complete the following steps carefully
to do this.

Let µ ∈ C∞
c (a, b) be fixed and satisfy

∫

µ = 1. Let φ ∈ C∞
c (a, b) and let c =

∫

φ.

(i) Show ψ = φ− cµ ∈ C∞
c (a, b) and

∫

ψ = 0.

(ii) Show there exists some η ∈ C∞
c (a, b) with

ψ = η′.
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(iii) Notice that ψ = η′ is a function which can replace φ′ in the condition (1)
defining what it means for u to be a weak solution. Make this substitution
with ψ = φ− cµ, and use the fundamental lemma of the calculus of varia-
tions to determine all weak solutions u ∈ C0(a, b) of the ODE u′ = 0. Hint:
This will take some manipulations of the integrals involved, and you’ll need
to substitute the definition of the constant c. Remember the fundamental
lemma.

(d) Implicit in part (c) is a characterization of the subspace

N = {ψ ∈ C∞
c (a, b) : there exists some η ∈ C∞

c (a, b) with ψ = η′}
in C∞

c (a, b). Show N is the null space of the linear functional L : C∞
c (a, b) → R

given by

Lφ =

∫

φ.

There are several directions we can go from here. One is that we could reduce the
regularity in our definition of weak solution even further. We have defined a notion
of C0 weak solution using integration against a smooth test function. Remember,
functions do not have to be continuous to be integrable. A function u : (a, b) → R

is said to be in L1
loc(a, b) if

∫

K
|u| makes sense and is finite whenever K ⊂⊂(a, b). A

function u ∈ L1
loc(a, b) is a weak solution of u′ = 0 if

∫

(a,b)

uφ′ = 0 for every φ ∈ C∞
c (a, b). (2)

Problem 3 (a) Show that the Heaviside function

H(x) =

{

0, x < 0
1, x ≥ 0

is not an L1
loc weak solution of u′ = 0 on R.

(b) Show that any L1
loc weak solution of u′ = 0 is a classical solution in the sense

that there is some classical solution u0 ∈ C1(a, b) for which

u(x) = u0(x) for almost every x ∈ (a, b).

The phrase “for almost every” here has a precise technical meaning. It means

{x ∈ (a, b) : u(x) 6= u0(x)} has (one-dimensional Lebesgue) measure zero.

Hint: Use the strong(er) form of the fundamental lemma of the calculus of
variations.
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The other natural direction in the consideration of weak solutions of ODEs is to
consider the higher order equation u′′ = 0. As we saw for the first order equation
u′ = 0, there are different possible notions of weak solution for the second order
equation u′′ = 0. We will give four of them listed as I, II, III, and IV below. For the
second one we will need an auxiliary definition which is also of related interest:

Definition 1 A function u ∈ L1
loc(a, b) is said to have a weak derivative v ∈

L1
loc(a, b) if

∫

vφ = −
∫

(a,b)

uφ′ for all φ ∈ C∞
c (a, b). (3)

The differential operator D∗ : C∞(a, b) → C∞(a, b) by D∗φ = −φ′ appearing on the
right in (3) is said to be the adjoint of the operator D : C1(a, b) → C0(a, b) by
Du = u′.

The collection of all functions u ∈ L1
loc(a, b) with a weak derivative in L1

loc(a, b) is
denoted by W 1(a, b).

(I) A function u : (a, b) → R is a C1 weak solution of u′′ = 0 if u ∈ C1(a, b) and

∫ b

a

u′(x)φ′(x) dx = 0 for all φ ∈ C∞
c (a, b).

(II) A function u ∈ W 1(a, b) is a W 1 weak solution of u′′ = 0 if

∫

(a,b)

vφ′(x) = 0 for all φ ∈ C∞
c (a, b)

where v ∈ L1
loc(a, b) is the weak derivative of u.

(III) A C0 weak solution of u′′ = 0 is a function u ∈ C0(a, b) with

∫ b

a

u(x)φ′′(x) dx = 0 for all φ ∈ C∞
c (a, b).

(IV) A L1
loc weak solution of u′′ = 0 is a function u ∈ L1

loc(a, b) with

∫

(a,b)

uφ′′(x) = 0 for all φ ∈ C∞
c (a, b).
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Problem 4 Find all classical solutions u ∈ C2(a, b) of u′′ = 0 and show that any
classical solution is a weak solution in each of the four senses I-IV given above. (Use
integration by parts.)

Problem 5 (a) Show every weak C1 solution of u′′ = 0 is a classical solution. Hint:
u′ is a C0 weak solution of w′ = 0.

(b) Show every weak W 1 solution of u′′ = 0 is a classical solution. Hint: This is,
in principle, just as easy as the previous part because the weak derivative v of a
weak W 1 solution u is an L1

loc weak solution of w′ = 0. However, you need to
prove a technical lemma in this case:

Lemma 1 Given a function u ∈ W 1(a, b), there exists a unique weak deriva-
tive v ∈ L1

loc(a, b) for u in the sense that if ṽ ∈ L1
loc(a, b) is another weak

derivative of u, then ṽ = v almost everywhere, i.e., ṽ(x) = v(x) for almost
every x ∈ (a, b).

Hint: Apply the fundamental lemma to the difference ṽ − v.

(c) Show every C0 weak solution of u′′ = 0 is a classical solution. Hint: For this you
need a characterization of

T = {ψ ∈ C∞
c (a, b) : ψ = η′′ for some η ∈ C∞

c (a, b)}.

If ψ ∈ T , then
∫

xψ = 0.

(d) Show every L1
loc weak solution of u′′ = 0 is a classical solution.
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Laplace’s Equation and Poisson’s Equation

Here is a Theorem.

Theorem 1 If U is a bounded open subset of Rn with C2 boundary and g ∈ C0(∂U),
then there exists a unique u ∈ C∞(U) ∩ C0(U) such that

{

∆u = 0 on U
u∣
∣

∂U

≡ g.

This is an existence and uniqueness theorem for Laplace’s equation. You may not
know what it means for ∂U to be C2, so I will tell you: For each point p ∈ ∂U ⊂ R

n,
there is some ǫ > 0 and some C2 vector valued function

ψ ∈ C2(B1(0) → Bǫ(p) ∩ ∂U)

with domain the unit ball B1(0) ⊂ R
n−1 and satisfying the following conditions

1. ψ is one-to-one and onto (surjective).

2. ψ−1 ∈ C0(Bǫ ∩ ∂U → B1(0)).

3. The total derivative Dψ : B1(0) → Mn×(n−1)(R) where Mn×(n−1)(R) denotes
the real valued n × (n − 1) matrices has Du(q) having full rank, i.e., rank
n− 1, at each q ∈ B1(0) ⊂ R

n−1.

It turns out (as you might imagine) this theorem is rather difficult to prove. One
approach is to prove the existence of weak solutions and then prove that the weak
solutions are actually regular in the sense of being classical solutions as given in the
theorem.

We will not go through the details of the proof of the theorem, but I think it is
reasonable for you to understand some of those details. To this end, let me introduce
the usual definition of weak solutions for Laplace’s equation. These are called H1

weak solutions. As you might guess the collection W 1
loc(U) of functions defined on U

and having weak first partial derivatives is defined as follows: A function u ∈ W 1
loc(U)

if u ∈ L1
loc(U), that is,

∫

K

|u| makes sense and is finite whenever K ⊂⊂U ,
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and there exist function v1, v2, . . . , vn ∈ L1
loc(U), the weak partial derivatives of u,

determined by the condition(s)
∫

U

vjφ = −
∫

U

uDjφ for all φ ∈ C∞
c (U) and j = 1, 2, . . . , n.

The function u ∈ W 1
loc(U) is in H1(U) if u ∈ L2(U), meaning

∫

U

|u|2 <∞,

and each of the weak partials v1, v2, . . . , vn ∈ L2(U) as well. The space H1 is called
the Sobolev space of functions with weak first partial derivatives in L2. This space
is used primarily because it is an inner product space with inner product

〈u, w〉H1 =

∫

U

(

uw +
n
∑

j=1

vjyj

)

where v1, v2, . . . , vn are the weak first partials of u and y1, y2, . . . , yn are the weak first
partials of w.

With these preliminaries, here is the usual definition for weak solutions:

Definition 2 A function u ∈ H1(U) is an H1 weak solution of the PDE ∆u = 0
if

n
∑

j=1

∫

U

vjDjφ = 0 for all φ ∈ C∞
c (U).

Problem 6 (a) Show a classical solution u ∈ C2(U) ∩ C0(U) of Laplace’s equation
with first partials Dju ∈ L2(U) for j = 1, 2, . . . , n is a weak solution. (This
requires you to show the classical derivatives are weak first partial derivatives
and that the condition in the definition above holds if ∆u = 0.)

(b) Show that a C1 weak extremal u ∈ C1(U) ∩ C0(U) for the Dirichlet energy with
first partials Dju ∈ L2(U) for j = 1, 2, . . . , n is a weak solution of ∆u = 0.

(c) Show that an H1 weak solution u ∈ H1(U) ∩ C2(U) is a classical solution.

(d) Show that if a weakly differentiable function u ∈ W 1(U) has a weak j-th partial
derivative and u has a classical j-th partial derivative defined on an open set
U ⊂ U , then

vj =
∂u

∂xj
almost everywhere in U .
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Problem 7 (The Fundamental Solution)

(a) Find all axially symmetric (classical) solutions u : R2 → R of Laplace’s equation
having the form u(x, y) = φ(x2 + y2).

(b) Find all axially symmetric (classical) solutions u : Rn → R (n > 2) of Laplace’s
equation having the form u(x) = φ(|x|2).

In each of parts (a) and (b) you should have found a one parameter family of
classical solutions {aφ0 : a ∈ R} ⊂ C2(Rn). When you have identified a basis function
φ0 with confidence, you may proceed to the next parts.

(c) Find a two parameter family

{aφ0 + bφ1 : a, b ∈ R} (4)

of axially symmetric solutions φ ∈ C2(Rn\{0}) of ∆u = 0 on the punctured
Euclidean space R

n\{0}.

In the remaining parts of this problem, we restrict attention to the case n > 2.
You may formulate and solve versions of the parts below also for n = 2.

Take φ0 ∈ C2(Rn\{0}), n > 2 in part (c) as the restriction of the basis function
φ0 you found in part (b). Then choose the basis function φ1 so that

lim
|x|→∞

φ1(x) = 0.

We consider a solution of the form φ = bφ1 below. The fundamental solution
of Laplace’s equation is a solution of this form with an appropriate scaling constant
b = bn. The calculations of part (e) below is aimed at identifying the appropriate
constant.

(d) Show φ1 ∈ L1
loc(R

n) ∩ C2(Rn\{0}).

(e) Given f ∈ C2
c (R

n) compute
∆(φ1 ∗ f).

If you have trouble with this calculation, you can follow the following steps/hints:
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(i) Write out the convolution integral and differentiate under the integral sign
to compute an expression for the Laplacian having the form

∫

Rn

f1.

Hint: Write the convolution integral so that the derivatives fall on the
function which has them on all of R

n. Technically, this requires some
argument to justify the differentiation under the integral, but you can just
assume it works. (Or you can prove it using difference quotients...and the
dominated convergence theorem.)

(ii) Let ǫ > 0 and break up your integral in the form
∫

Rn

f1 =

∫

Bǫ(0)

f1 +

∫

Rn\Bǫ(0)

f1.

At this point, you should make sure the singularity in φ1 is located at
0 ∈ R

n with respect to the variable of integration, and you can show the
first integral limits to zero as ǫց 0. Thus, the strategy is to compute

lim
ǫց0

∫

Rn\Bǫ(0)

f1.

(iii) Use the divergence theorem/multivariable integration by parts to write the
integral of interest in the form

∫

Rn\Bǫ(0)

f1 =

∫

∂Bǫ(0)

φ1v · n−
∫

Rn\Bǫ(0)

Dφ1 · v

for an appropriate vector field v. Again, show the limit of the first integral
is zero:

lim
ǫց0

∫

∂Bǫ(0)

φ1v · n.

Now you are left with

−
∫

Rn\Bǫ(0)

Dφ1 · v.

(iv) Integrate by parts again to obtain
∫

∂Bǫ(0)

φ1v · n =

∫

∂Bǫ(0)

w · n

for an appropriate vector field w. Hint: A term has vanished here.
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(v) The vector field w will involve first derivatives of φ1, and you’ll need to
compute those. Final hint: Express the last integral

∫

∂Bǫ(0)

w · n

as an average over ∂Bǫ(p) where p is the point of evaluation for ∆(φ1 ∗
f)(p). Take the limit as ǫ ց 0.

Separation of Variables; Superposition

Problem 8 (Assignment 4 Problem 4) Recall that you could not solve the boundary
value problem

{

∆u = 0 on U = (−r, r)× (0, L)
u(±r, y) = 0, 0 ≤ y ≤ L, u(x, L) = 0, u(x, 0) = f(x), |x| ≤ r,

(5)

with separated variables solutions u(x, y) = A(x)B(y) for all functions f ∈ C2(−r, r),
but you can find such a solution for certain choices. For example, if

f(x) = 5 cos
(πx

2r

)

,

then

u(x, y) = 5 cos
(πx

2r

)

[

cosh
(πy

2r

)

− coth

(

πL

2r

)

sinh
(πy

2r

)

]

is the (unique) solution.

(a) Find the solution when

f(x) = 5 cos
(πx

2r

)

+ 3 sin

(

5πx

r

)

.

(b) Use mathematical software to plot the solution you found in part (a). (Take r = 1
and L = 3.)
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(c) Adding solutions of a homogeneous linear PDE to obtain other solutions is called
superposition. Often you can add infinitely many such solutions to get another
solution as a series. Assuming

f(x) = r2 − x2 =
∞
∑

k=0

ak cos

(

(2k + 1)πx

2r

)

find the (Fourier) coefficients a0, a1, a2, a3, . . .. Hint: Show that the set

{

cos

(

(2k + 1)πx

2r

)}∞

k=0

is an orthogonal set in L2(−r, r). (Assignment 3, Problem 11 Part (c))

Compute the integral

∫ r

−r

f(x) cos

(

(2ℓ+ 1)πx

2r

)

dx

assuming the series expansion above.

(d) Produce a numerical plot of the first few terms of your series compared to the
function f(x) = r2 − x2. How many terms are required to obtain an accuracy
of 0.0001?

(e) Obtain the solution of

{

∆u = 0 on U = (−r, r)× (0, L)
u(±r, y) = 0, 0 ≤ y ≤ L, u(x, L) = 0, u(x, 0) = r2 − x2, |x| ≤ r

as a superposition

u(x, y) =

∞
∑

k=0

ckuk(x, y)

for appropriate constants c0, c1, c2, c3, . . . and separated variables solutions u0, u1, u2, u3, . . ..

(f) Plot the first few terms of your solution series.
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First Order PDE

Problem 9 Assume the first order PDE

∂u

∂x
+
∂u

∂y
= 0

has a solution u ∈ C1(R2) with u(x, 0) = u0(x). Find the solution. Hint: Let γ(t) be
a curve with γ(0) = (x0, 0), and choose γ so that the PDE tells you u ◦ γ(t) ≡ u0(x0)
is constant. (The chain rule.)

The problem
{

aux + buy = f for (x, y) ∈ U
u ◦ α(t) = g ◦ α(t) for t ∈ R

is called the Cauchy problem for the first order PDE aux+buy = f in two variables.
In this case, the condition u ◦ α(t) = g ◦ α(t) is called the Caunchy data on the
curve α : R → U . The Cauchy problem is a kind of PDE analogue of the initial value
problem from ODEs.

Definition 1 A curve α ∈ C1(R → U), is said to be non-characteristic if α′(t) is
not parallel to the coefficient vector (a, b).

Problem 10 Give examples of what can go wrong in the following situations:

(a) If α is characteristic. Hint: The curves γ in Problem 9 are called characteristic
curves.

(b) If Ba(0)⊂⊂U ⊂ R
2 and α(t) = a(cos t, sin t). This example shows why the Cauchy

problem is very different from a Dirichlet problem.
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Notes and Solutions

Problem 2

(a) Find all classical solutions of the ODE u′ = 0.

Classically, the solution space for this (linear homogeneous) ODE is the set of
all constant functions:

{u : (a, b) → R such that there exists some c ∈ R with u(x) ≡ c for all x ∈ (a, b)}.

For classical solutions, you can just get this from the fundamental theorem of
calculus by integrating the equation: Let x0 ∈ (a, b), then

∫ x

x0

u′(t) dt = 0,

so u(x)− u(x0) = 0 or u(x) ≡ u(x0).

(b) Show that if u ∈ C1(a, b) is a classical solution of u′ = 0, then (1) holds, that is,
u is a weak solution.

There are two (obvious) ways to do this. The first is to note that a classical
solution is a constant function, so

∫ b

a

u(x)φ′(x) dx =

∫ b

a

cφ′(x) dx = c

∫ b

a

φ′(x) dx = c[φ(b)− φ(b)] = 0

by the fundamental theorem of calculus. Another way, which is preferable
in a certain sense, is to integrate by parts: Let ã = min supp(φ) and b̃ =
max supp(φ), then a < ã ≤ b̃ < b, and

∫ b

a

u(x)φ′(x) dx = uφ∣
∣

b̃

ã

−
∫ b

a

u′(x)φ(x) dx = 0

since φ(ã) = φ(b̃) = 0 and u′(x) = 0 clasically.

(c) Now, we want to show that if u ∈ C0(a, b) is a weak solution of u′ = 0, then u is a
classical solution you found in part (a). Complete the following steps carefully
to do this.

Let µ ∈ C∞
c (a, b) be fixed and satisfy

∫

µ = 1. Let φ ∈ C∞
c (a, b) and let c =

∫

φ.
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(i) Show ψ = φ− cµ ∈ C∞
c (a, b) and

∫

ψ = 0.

It’s clear that ψ ∈ C∞
c (a, b) since supp(ψ) is a closed subset of supp(φ) ∪

supp(µ) which is a closed set compactly contained in (a, b). Also ψ is
infinitely differentiable of course. Furthermore,

∫

ψ =

∫

φ− c

∫

µ =

∫

φ− c = 0.

(ii) Show there exists some η ∈ C∞
c (a, b) with

ψ = η′.

Let η : (a, b) → R by

η(x) =

∫ x

a

ψ(t) dt.

Then η(x) = 0 for all ã ≤ x ≥ b̃ where ã = min supp(ψ) and b̃ =
max supp(ψ). Therefore, supp(η) ⊂ supp(ψ). Also, by the fundamental
theorem of calculus

η′(x) = ψ(x),

so η ∈ C∞
c (a, b) and satisfies the required condition.

(iii) Notice that ψ = η′ is a function which can replace φ′ in the condition (1)
defining what it means for u to be a weak solution. Make this substitu-
tion with ψ = φ − cµ, and use the fundamental lemma of the calculus of
variations to determine all weak solutions u ∈ C0(a, b) of the ODE u′ = 0.

0 =

∫ b

a

u(x)η′ dx

=

∫ b

a

u(x)ψ(x) dx

=

∫ b

a

u(x)(φ(x)− cµ(x)) dx

=

∫ b

a

u(x)φ(x) dx− c

∫ b

a

u(x)µ(x) dx

=

∫ b

a

u(x)φ(x) dx−
∫ b

a

φ(x) dx(α)
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where

α =

∫ b

a

u(x)µ(x) dx.

This means
∫ b

a

[u(x)− α]φ(x) dx for all φ ∈ C∞
c (a, b).

By the fundamental lemma u(x) = α for x ∈ (a, b). That is, u is a constant
function.

(d) Implicit in part (c) is a characterization of the subspace

N = {ψ ∈ C∞
c (a, b) : there exists some η ∈ C∞

c (a, b) with ψ = η′}

in C∞
c (a, b). Show N is the null space of the linear functional L : C∞

c (a, b) → R

given by

Lφ =

∫

φ.

If ψ ∈ N , then

Lψ =

∫

ψ =

∫

η′ = η(b)− η(a) = 0.

Thus, ψ is in the null space of L. On the other hand, if ψ is in the null space of
L, then

∫

ψ = 0, and the discussion of part (c-ii) applies with η : (a, b) → R by

η(x) =

∫ x

a

ψ(t) dt

giving a function η ∈ C∞
c (a, b) with η′ = ψ. Thus, ψ ∈ N .

Problem 2 Part (c):

If ψ = η′′ ∈ C∞
c (a, b), then

∫ b

a

xψ(x) dx =

∫ b

a

xη′′(x) dx = −
∫ b

a

η′(x) dx = 0.

Maybe this is not such a comprehensive hint—actually, it’s a pretty weak hint. What
you really need is a way to “build” a C∞

c function ψ in T using an arbitrary C∞
c

17



function φ. For this it helps to have a characterization of the functions in T , and
the hinted condition is not enough. Let’s take it a little more slowly. If, first of all,
ψ = η′′, then

η′(x) =

∫ x

a

ψ(t) dt,

and this tells us
∫

ψ = 0. Then we come to the hint:

η(x) =

∫ x

a

∫ s

a

ψ(t) dt ds.

But Fubini’s theorem, we can think of the expression on the right as an integral over
a triangle in the s, t-plane and change the order of integration:

η(x) =

∫ x

a

∫ x

t

ψ(t) ds dt =

∫ x

a

ψ(t)(x− t) dt = x

∫ x

a

ψ(t) dt−
∫ x

a

tψ(t) dt.

Notice that this means, as suggested in the hint, that
∫

xψ = 0 is a necessary condition
for a function to be in T . In fact, we characterize T as the intersection of two null
spaces

T = ker(L) ∩ ker(M)

where L : C∞
c (a, b) → R by Lψ =

∫

ψ and M : C∞
c (a, b) → R by Mψ =

∫

xψ. We
have established that T ⊂ ker(L) ∩ ker(M). Given any ψ ∈ ker(L) ∩ ker(M) it is
straightforward to see that

η(x) =

∫ x

a

∫ s

a

ψ(t) dt ds = x

∫ x

a

ψ(t) dt−
∫ x

a

tψ(t) dt

defines η ∈ C∞
c (a, b) with η′′ = ψ. Thus, we have a characterization.

Then is the tricky part: How do you use this characterization to “build” a function
in ψ ∈ T from an arbitrary φ ∈ C∞

c (a, b)? Here’s what you can do. Set ψ = φ−cµ−dν
where mu, ν ∈ C∞

c (a, b) with
∫

µ =
∫

ν = 1. Then the conditions
∫

ψ = 0 and
∫

xψ = 0 give a pair of linear equations for the constant coefficents c and d, namely,

(
∫

µ

)

c+

(
∫

ν

)

d =

∫

φ

(
∫

xµ

)

c+

(
∫

xν

)

d =

∫

xφ.
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That is,






c + d =
∫

φ

(∫

xµ
)

c +
(∫

xν
)

d =
∫

xφ.

In order to get a solution for this equation, we need
∫

xν −
∫

xµ =

∫

x(ν − µ) 6= 0.

One easy way to accomplish this is to define ν to simply be a small shift of µ. That
is, fix µ ∈ C∞

c (a, b) with
∫

µ = 1 and then define ν ∈ C∞
c (a, b) by ν(x) = µ(x − ǫ)

where ǫ > 0 is small enough so that {x : x− ǫ ∈ supp(µ)}⊂⊂(a, b). Then
∫

xν −
∫

xµ =

∫

(x+ ǫ)µ−
∫

xµ = ǫ > 0.

Furthermore, we can take

c =
1

ǫ

[
∫

xφ−
(
∫

xν

)(
∫

φ

)]

and d =
1

ǫ

[(
∫

xµ

)(
∫

φ

)

−
∫

xφ

]

so that ψ = φ− cµ− cν = η′′ ∈ T , and

0 =

∫

uψ

=

∫

uφ− c

∫

uµ− d

∫

uν

=

∫

uφ− 1

ǫ

∫
(
∫

uµ

)

xφ +
1

ǫ

∫
(
∫

uµ

)(
∫

xν

)

φ

− 1

ǫ

∫
(
∫

uν

)(
∫

xµ

)

φ+
1

ǫ

∫
(
∫

uν

)

xφ

=

∫

[u− αx− β]φ

where

α =
1

ǫ

[(
∫

uµ

)

−
(
∫

uν

)]

=
1

ǫ

(
∫

u(µ− ν)

)

and

β =
1

ǫ

[(
∫

uν

)(
∫

xµ

)

−
(
∫

uµ

)(
∫

xν

)]

.

Since this holds for every φ ∈ C∞
c (a, b), we have u(x) = αx+ β for every x ∈ (a, b).
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