
Assignment 4: Selected Solutions

Laplace’s equation

Due Friday, February 21, 2025

John McCuan

March 13, 2025

Problem 1 (Slinky) Make measurements of the hanging slinky (and any other mea-
surements associated with the hanging slinky physical system which you hope to be
able to compare to your model function from Problem 1 of Assignment 1). Do the
measurements match the qualitative expectations you gave in Problem 10 of Assign-
ment 1?

Problem 2 (non-uniqueness for ODEs) Consider the IVP

{

y′ =
√

|y|
y(t0) = y0

(1)

with t0, y0 ∈ R.

(a) What does Theorem 1 of Assignment 3 tell you about the IVP (1)?

(b) Solve the IVP (1).

(c) Find particular values of y0 and t0 for which (1) has three distinct solutions
y1, y2, y3 ∈ C1(R).
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Problem 3 (harmonic functions) Any solution of Laplace’s equation is called a har-
monic function. Consider f : C → C by f(z) = ez.

(a) Write z = x + iy as in part (a) of Problem 8 of Assignment 3 and find the
real and imaginary parts u and v of ez. Hint: Remember Euler’s formula
eiθ = cos θ + i sin θ.

(b) Show u and v are harmonic.

(c) Two harmonic functions u, v : Ω → R are said to be harmonic conjugates if
they satisfy1 the first order system of partial differential equations:

∂u

∂x
=

∂v

∂y
∂u

∂y
= −∂v

∂x
.

Show u and v from part (a) above are harmonic conjugates.

Problem 4 (axially symmetric solutions of Laplace’s equation; polar coordinates)
Consider Laplace’s equation ∆u = 0 on the punctured plane R2\{(0, 0)}. Find all
solutions of the form

u(x) = φ(|x|)
where φ : (0,∞) → R is a function of one variable with φ ∈ C2(0,∞). Hint:

∂u

∂x1
= φ′(|x|) x1

|x| .

Find an ODE satisfied by φ = φ(r) and then integrate to obtain a solution in terms
of two constants φ(1) and φ′(1).

Solution:
∂2u

∂x2
j

= φ′′(|x|)
x2
j

|x|2 + φ′(|x|)
(

1

|x| −
x2
j

|x|3
)

.

Therefore,

0 = ∆u = φ′′(|x|) + φ′(|x|)
(

2

|x| −
1

|x|

)

.

1This system of two first order PDEs is called the system of Cauchy-Riemann equations.
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Thus, we arrive at the ODE φ′′ + φ′/r = 0. Setting v = φ′ we have

v′ + v/r = 0 or − v′

v
=

1

r

at least away from the zero solution v ≡ 0. Of course the unique solution with
v(1) = φ′(1) = 0 is v ≡ 0 corresponding to φ(r) ≡ c for any constant c ∈ R. This
gives axially symmetric constant solutions on all of R2.

Integrating −v′/v = 1/r from r = 1 we find

−
∫ r

1

v′(ρ)

v(ρ)
dρ = ln r.

Changing variables with η = v(ρ) so that dη = v′(ρ) dρ and assuming for the moment
that φ′(1) > 0 we see

−
∫ φ′

φ′(1)

1

η
dη = ln

φ′(1)

φ′
= ln r.

This gives

φ′(r) =
φ′(1)

r

and φ(r) = φ(1) + φ′(1) ln r. If φ′(1) < 0, then we can set w(r) = −v(r) and have
−w′/w = 1/r with w(1) = −φ′(1) > 0. The solution above gives

−φ′(r) = w(r) =
w(1)

r
= −φ′(1)

r
,

so this is the same equation for φ. The general solution u : R1\{(0, 0)} → R for n = 2
has values

u(x, y) = φ(1) + φ′(1) ln
√

x2 + y2

where φ(1) and φ′(1) are any constants.
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Problem 5 (fundamental solution of Laplace’s equation when n = 2) The funda-
mental solution of Laplace’s equation when n = 2 is given by

Φ(x, y) = − 1

2π
log

√

x2 + y2.

(a) Note that the ODE you found for φ in Problem 4 above was a second order
homogeneous linear ODE. Consequently, the solution set

Σ = {φ ∈ C∞(0,∞) : ∆u = 0}

is a two dimensional vector subspace of C∞(0,∞). Thus, the solutions you
found should have been expressed as linear combinations φ = aφ1 + bφ2 of two
linearly independent basis solutions φ1 and φ2. Find the linear combination of
your solutions that gives the fundamental solution.

(b) Sketch the graphs of the functions φ and Φ where φ is the solution you found in
part (a) leading to Φ.

(c) The fundamental solution Φ has a singularity at x = (x, y) = (0, 0). Show
however that Φ is integrable across the singularity so that

0 <

∫

B1(0)

Φ < ∞.

Hint: Integrate in polar coordinates.

Solution:

(a) For the solution φ(r) = φ(1)+ φ′(1) ln r we can take φ1(r) = ln r and φ2(r) ≡ 1.
Thus,

φ(r) = φ′(1) ln r + φ(1) φ2(r).

With this choice, the coefficients φ(1) = 0 and φ′(1) = −1/(2π) give the funda-
mental solution.
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(b) Plots of Φ and φ:

Figure 1: Plot of the graph of the fundamental solution Φ when n = 2 (left). Plot of
the profile or meridian of the graph (right).

(c) Notice that Φ(x) > 0 for |x| < 1. Therefore,

∫

B1(0)

Φ > 0.

Note on the other hand that
∫

B1(0)

Φ = lim
ǫց0

∫

B1(0)\Bǫ(0)

Φ.

5



We then have for n = 2 and 0 < ǫ < 1
∫

Bǫ(0)

Φ = − 1

2π

∫

x∈B1(0)\Bǫ(0)

ln |x|

= − 1

2π

∫ 2π

0

∫ 1

ǫ

r ln r dr dθ

= −
∫ 1

ǫ

r ln r dr

= −
∫ 1

ǫ

r

(
∫ r

1

1

ξ
dξ

)

dr

=

∫ 1

ǫ

r

(
∫ 1

r

1

ξ
dξ

)

dr

≤
∫ 1

ǫ

r

(
∫ 1

r

1

r
dξ

)

dr

=

∫ 1

ǫ

(1− r) dr

= 1− ǫ− 1

2
(1− ǫ2)

< 1/2.

Alternatively for a more precise answer one can integrate by parts:

−
∫ 1

ǫ

r ln r dr = −1

2

∫ 1

ǫ

(

d

dr
r2
)

ln r dr

= −1

2

[

(

r2 ln r
)

∣

∣

1

ǫ

−
∫ 1

ǫ

r dr

]

=
1

2

[

ǫ2 ln ǫ+
1

2

(

1− ǫ2
)

]

=
1

2

[

1

2
− ǫ2

(

ln ǫ− 1

2

)]

.

Here we can take the limit using L’Hopital’s rule to see that for n = 2

− lim
ǫց0

ln ǫ

1/ǫ
= − lim

ǫց0
ǫ = 0 and

∫

B1(0)

Φ =
1

4
.
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Problem 6 (separated variables solution) Consider ∆u = 0 on the rectangular do-
main Ω = (0, L)×(0,M) ⊂ R2 where L and M are positive real numbers. The bound-
ary of Ω is a rectangle. In this case it is natural to look for a solution u ∈ C2(Ω)∩C0(Ω)
where Ω is the closure of Ω or the closed rectangular domain.

Assume u(x, 0) = sin(πx/L) and u(0, y) = u(L, y) for y ∈ [0,M ]. Find all solu-
tions of the form u(x, y) = f(x)φ(y) with φ(0) = 1.

Solution: The PDE gives
f ′′φ+ fφ′′ = 0

where the ordinary derivatives on f are with respect to x and the ordinary derivatives
on φ are with respect to y. For any point (x, y) ∈ (0, L)× (0,M) with f(x) 6= 0 and
φ(y) 6= 0 there holds

f ′′(x)

f(x)
= −φ′′(y)

φ(y)
. (2)

Fixing one such point (x0, y0) ∈ (0, L) × (0,M) we may conclude from continuity
that there is some r > 0 for which the relation (2) will hold for (x, y) ∈ Br(x0, y0).
Differentiating both sides of (2) in this ball with respect to x we see

∂

∂x

(

f ′′(x)

f(x)

)

= 0.

Thus, the function g : Br(x0, y0) → R with values

g(x, y) =
f ′′(x)

f(x)

is a constant λ on Br(x0, y0). In this way, we obtain two ODEs:

f ′′ = λf and φ′′ = −λφ (3)

for f = f(x) and φ = φ(y) holding on (x, y) ∈ Br(x0, y0) and for x0 − r < x < x0 + r
and y0 − r < y < y0 + r respectively. If the constant λ is negative, then

f(x) = a1 cos(µx) + a2 sin(µx) and φ(y) = b1 cosh(µy) + b2 sinh(µy)

for some real constants a1, a2, b1, b2 and µ =
√
−λ. Note that any function w ∈

C∞(Br(x0, y0) with values

w(x, y) = [a1 cos(µx) + a2 sin(µx)] [b1 cosh(µy) + b2 sinh(µy)]
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extends to a function u ∈ C∞(R2) by the same formula.
If we seek a solution u of the original problem given globally by the formula

u(x, y) = [a1 cos(µx) + a2 sin(µx)] [b1 cosh(µy) + b2 sinh(µy)], (4)

the auxiliary condition φ(0) = 1 implies b1 = 1, and the condition u(x, 0) = sin(πx/L)
then requires

f(x) = a1 cos(µx) + a2 sin(µx) = sin(πx/L) (5)

for 0 < x < L. The condition u(0, y) = u(L, y) is now automatically satisfied. So far
we have a potential solution of the form

u(x, y) = sin(πx/L) [cosh(µy) + b sinh(µy)].

Note that with a function u of this form we have

∆u =

(

−π2

L2
+ µ2

)

u.

Thus, we must also have µ = ±π/L. Since the hyperbolic cosine is even and the
constant b is arbitrary, all of these solutions constitute a one parameter family u ∈
C∞(R2) given by the formula(s)

u(x, y) = sin(πx/L) [cosh(πy/L) + b sinh(πy/L)]. (6)

If λ = 0 the ODEs (3) have solutions

f(x) = a1x+ a2 and φ(y) = b1y + b2.

Again w ∈ C∞(R2) by w(x, y) = (a1x + a2)(b1y + b2) is a four parameter separated
variables solution of the PDE ∆u = 0, but if we attempt to find a global solution on
[0, L]× [0,M ] satisfying all the conditions of the problem we need the following:

1. b2 = 1 and

2. a1x+ a2 = sin(πx/L) for 0 < x < L.

The second condition cannot hold since taking x = 0 gives a2 = 0 and then taking
x = L gives a1 = 0.
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Finally, we consider the case λ > 0. Then (3) has (general) solutions

f(x) = a1 cosh(µx) + a2 sinh(µx) and φ(y) = b1 cos(µy) + b2 sin(µy)

for some real constants a1, a2, b1, b2 and µ =
√
λ. Again, the function w ∈ C∞(Br(x0, y0))

with values

w(x, y) = [a1 cosh(µx) + a2 sinh(µx)] [b1 cos(µy) + b2 sin(µy)]

extends to a function u ∈ C∞(R2) by the same formula, and we can seek a solution
u of the original problem given globally by the formula

u(x, y) = [a1 cosh(µx) + a2 sinh(µx)] [b1 cos(µy) + b2 sin(µy)], (7)

the auxiliary condition φ(0) = 1 again implies b1 = 1, and the condition u(x, 0) =
sin(πx/L) then requires

f(x) = a1 cosh(µx) + a2 sinh(µx) = sin(πx/L). (8)

for 0 < x < L. Now taking x = 0 gives a1 = 0 and then taking x = L gives a2 = 0,
so this approach cannot lead to any new solutions different from those given in (6).

There is a bit of ambiguity here concerning the transition from the local solution
w of the PDE to the global solution to which one can apply the auxiliary condition
and the boundary conditions, so it is not entirely clear we have found all separated
variables solutions u(x, y) = f(x)φ(y). The solutions we have found however are at
least the traditional separated variables solutions.
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More generally, if Ω is a bounded open subset of Rn one may consider the boundary
value problem (BVP)

{

∆u = 0, on Ω
u∣
∣

∂Ω

= g (9)

where g : ∂Ω → R is a given function. If g ≡ 0, then the boundary condition is said
to be homogeneous.

Problem 7 (Laplace equation BVP; uniqueness of solutions) Complete the following
steps to show the problem (9) has a unique solution when g ≡ 0:

(a) Find one solution.

(b) Assume there is a solution u different from the one you found in part (a) and
u(p) > 0 for some p ∈ Ω. Consider v ∈ C∞(Rn) with values given by

v(x) = u(p)− ǫ

2
|x− p|2,

and show that if ǫ > 0 is small enough, then

v∣
∣

∂Ω

> 0.

(c) Show there is some α ≥ 0 and q ∈ Ω such that w ∈ C∞(Rn) with values given
by

w(x) = v(x) + α

satisfies

(i) w ≥ u on Ω, and

(ii) w(q) = u(q).

Hint(s):
u(q)− v(q) = max

x∈Ω
[u(x)− v(x)].

(d) Show ∆u(q) ≤ ∆w(q) < 0 contradicting the fact that ∆u(q) = 0.

Problem 8 Explain why the steps in Problem 7 essentially imply uniqueness of so-
lutions for the problem

{

∆u = 0, on Ω
u∣
∣

∂Ω

≡ 0

when Ω is bounded and u ∈ C2(Ω) ∩ C0(Ω).
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Problem 9 (Boundary values and Poisson’s equation) Consider a special case of the
BVP (9) for Laplace’s equation in which we assume there is a function φ ∈ C2(Ω)
with restriction satisfying

φ∣
∣

∂Ω

≡ g.

(a) Find a boundary value problem satisfied by v = u− φ.

(b) The equation ∆u = f where f : Ω → R is a given function is called Poisson’s
equation. Notice that Laplace’s equation is the associated homogeneous equa-
tion for this PDE. Use Problem 8 to prove the following uniqueness assertion:
If Ω is a bounded open subset of Rn and v, w ∈ C2(Ω)∩C0(Ω) both satisfy the
BVP

{

∆u = f, on Ω
u∣
∣

∂Ω

= g

then v ≡ w.

Problem 10 (Laplace’s PDE in one dimension)

(a) State/pose the BVP for Laplace’s equation in one dimension. Hint: Take Ω =
(a, b).

(b) Solve the problem from part (a).

(c) Write your solution as a convex combination of u(a) and u(b).
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