MATH 6702 Assignment $4 = Exam 2$ Due Monday March 22, 2021

John McCuan

March 23, 2021

Laplace's Equation and Poisson's Equation

Problem 1 (Boas 13.1.1) Recall Problem 1 and Problem 4 from Assignment 3. A standard model of electrostatics involves the notions of charge density and electrostatic potential. The charge density is a function $\rho: U \to \mathbb{R}$ where U is an open subset of \mathbb{R}^3 having units

$$
[\rho] = \frac{[\text{ charge }]}{L^3}
$$

so that the total charge in a region $\Omega \subset \mathcal{U}$ is

$$
\int_{\Omega}\rho.
$$

The electrostatic potential is a function $v : U \to \mathbb{R}$ having, first of all, the property that the electric field on U is defined by

$$
\mathbf{E} = -\nabla v = -Dv.
$$

The electrostatic potential, furthermore, has units

$$
[v] = \frac{[\text{ energy }]}{[\text{ charge }]}
$$

so that ρv defines an energy density on U. Finally, the constant ϵ_0 is called the permittivity of free space and has units

$$
[\epsilon_0] = \frac{[\text{ charge }]^2}{[\text{ energy }] L}.
$$

(a) Find the units of

$$
\mathcal{D}[v] = \epsilon_0 \int_{\mathcal{U}} |Dv|^2.
$$

(b) Find the units of

$$
\mathcal{E}[v] = \int_{\mathcal{U}} \rho v.
$$

- (c) Interpret the extremization of $H = D \mathcal{E}$ in terms of Hamilton's principle.
- (d) Assume ρ is given and find a PDE satisfied by an extremal $v \in C^2(\mathcal{U})$ of \mathcal{H} .
- (e) Write down a single PDE in the three unknown component functions of the field.

Problem 2 (uniqueness) Use the weak maximum principle (Problem 9 of Assignment 3) to prove uniqueness for C^2 solutions of Poisson's equation: Let U be an open bounded subset of \mathbb{R}^2 . Let $f \in C^0(\mathcal{U})$ and $g \in C^0(\partial \mathcal{U})$. If $v, \tilde{v} \in C^2(\mathcal{U}) \cap C^0(\overline{\mathcal{U}})$, and both v and \tilde{v} satisfy the boundary value probem

$$
\begin{cases} \Delta u = f, & \text{on } U \\ u_{\vert_{\partial U}} = g, \end{cases}
$$

then $v \equiv \tilde{v}$. Hint: Consider $w = v - \tilde{v}$ and show w is a solution of a boundary value problem for Laplace's PDE.

Problem 3 (mean value property) Let \mathcal{U} be an open subset of \mathbb{R}^2 and $u \in C^2(\mathcal{U})$ be a solution of Laplace's equation. Assume $\overline{B_r(\mathbf{x})} \subset \mathcal{U}$. For $0 < a \leq r$, the mean value of u on the boundary of $B_a(\mathbf{x})$ is defined by

$$
m(\mathbf{x};a) = \frac{1}{2\pi a} \int_{\partial B_a(\mathbf{x})} u.
$$

The mean value of u on $B_r(\mathbf{x})$ is defined by

$$
M(\mathbf{x};r) = \frac{1}{\pi r^2} \int_{B_r(\mathbf{x})} u.
$$

(a) Show

$$
\frac{d}{da}m(\mathbf{x};a) = 0.
$$

Hint: Follow the following steps:

- (i) Change variables to express the integral over the circle $\partial B_a(\mathbf{x})$, either, over a unit circle or over the interval $[0, 2\pi)$, and differentiate under the integral sign.
- (ii) Change variables back to $\partial B_a(\mathbf{x})$ and use the divergence theorem.
- (b) Show

$$
M(\mathbf{x};r) \equiv m(\mathbf{x};a) \equiv u(\mathbf{x}).
$$

 $Hint(s)$: Change variables in the integral defining M to "generalized polar coordinates" so that

$$
\int_{B_r(\mathbf{x})} u = \int_0^r \left(\int_{\partial B_a(\mathbf{x})} u \right) da.
$$

Take a limit as $a \searrow 0$.

This result is called the mean value property for solutions of Laplace's equation.

Problem 4 (separation of variables) Let $r, L > 0$ and $f \in C^0(-r, r)$ be given. Let $\mathcal{U} = (-r, r) \times (0, L) \subset \mathbb{R}^2$, and consider the boundary value problem

$$
\begin{cases} \Delta u = 0, & \text{on } \mathcal{U} \\ u_{\vert_{x=\pm r}} = 0 = u_{\vert_{y=L}}, & u_{\vert_{y=0}} = f \end{cases}
$$
 (1)

where $f \in C^0(-r, r)$.

(a) Assume you have a solution having the special product form $u(x, y) = A(x)B(y)$. Such a solution is called a separated variables solution. Show that given such a solution the equation $\Delta u = 0$ can be rearranged in the form

$$
\frac{A''}{A} = -\frac{B''}{B}.\tag{2}
$$

- (b) Prove that the relation (2) implies both the left and right sides are constant.
- (c) The constant obtained in the previous part is called a separation constant. Write down boundary value problems (ODEs) for A and B using the separation constant and the boundary values from (1).
- (d) One of the ODEs you have written down in the previous part can be used to determine a monotonic infinite sequence

$$
\lambda_1, \lambda_2, \lambda_3, \ldots
$$

of permissible values of the separation constant.

(e) Find all separated variables solutions of the boundary value problem (1).

Multivariable Calculus

Problem 5 (differential approximation; Boas4.4.1-3) Use differentials to accomplish the following:

(a) Express the approximation formula

$$
\frac{1}{(n+1)^3} - \frac{1}{n^3} \approx -\frac{3}{n^4} \qquad \text{for } n \text{ large}
$$

in terms of a differential mapping.

(b) Express the approximation formula

$$
\sqrt{n+a} - \sqrt{n} \approx \frac{a}{2\sqrt{n}} \qquad \text{for } n \text{ large and a small}
$$

in terms of a differential mapping.

(c) Assume $u = u(x, y)$ is determined by the formula

$$
\frac{1}{u} + \frac{1}{x} = \frac{1}{y}.
$$

(i) Find a differential approximation formula

$$
u(x + \delta, y + \epsilon)
$$
 for δ and ϵ small

in terms of x and y.

(ii) Express your approximation formula in terms of only x and $u(x, y)$ (not involving y assuming $\epsilon = 0$.

Note: Part (c) is corrected from a previous incorrect attempt to "enhance" Problem 3 of Section 4 in Chapter 4 of Boas. Further comments may be found at the end of this assignment.

Problem 6 (integration and scaling)

(a) Let $\Psi : [0, \infty) \times [0, \pi] \times [0, 2\pi] \rightarrow \mathbb{R}^3$ by

$$
\Psi(r,\phi,\theta) = (r\sin\phi\cos\theta, r\sin\phi\sin\theta, r\cos\phi).
$$

Compute the total derivative $D\Psi$ of Ψ and the associated scaling factor according to the first scaling principle.

(b) (Boas 5.4.20) Use the change of variables

$$
x = (\xi - \eta)/2
$$

$$
y = (\xi + \eta)/2
$$

to evaluate the integral

$$
\int_0^{1/2} \int_x^{1-x} \left(\frac{x-y}{x+y}\right)^2 dy dx.
$$

(c) Let S be the surface parameterized by

$$
X(u, v) = (u \cos v, u \sin v, v)
$$

for $0 \le u \le 1$ and $0 \le v \le \pi$. Consider $f : \mathcal{S} \to \mathbb{R}$ by

$$
f(p) = \text{dist}(p, L)
$$

where $L = \{(0, 0, z) : z \in \mathbb{R}\}\$ is the z-axis.

- (i) Sketch (or produce a plot using mathematical software) of the surface S .
- (ii) Use the second scaling principle to determine the scaling factor associated with the mappint X.
- (iii) Find $\int_{\mathcal{S}} f$.

Problem 7 Assume the following:

- (i) $f, g \in C^{0}(\mathbb{R})$.
- (ii) $f, g \geq 0$.
- (iii) $\text{supp}(f) = [a, b]$ and $\text{supp}(g) = [c, d]$.
- (a) Define $f * g : \mathbb{R} \to \mathbb{R}$ by

$$
(f * g)(x) = \int_{-\infty}^{\infty} f(\xi)g(x - \xi) d\xi.
$$

 $determine supp(f * g).$

(b) Assume $\phi_1 \in C_c^{\infty}(\mathbb{R})$ with $\text{supp}(\phi_1) = [-1, 1]$ and $\int \phi_1 = 1$. Show that for each $\epsilon > 0$, the function $\mu_{\epsilon} : \mathbb{R}^1 \to \mathbb{R}$ by

$$
\mu_{\epsilon}(x) = \frac{1}{\epsilon} \phi_1\left(\frac{x}{\epsilon}\right)
$$

satisfies supp $(\mu_{\epsilon}) = [-\epsilon, \epsilon]$ and $\int \mu_{\epsilon} = 1$.

(c) Assume $\phi_1 \in C_c^{\infty}(\mathbb{R}^n)$ with $\text{supp}(\phi_1) = \overline{B_1(0)}$ and $\int \phi_1 = 1$. Show that for each $\epsilon > 0$, the function $\mu_{\epsilon} : \mathbb{R}^n \to \mathbb{R}$ by

$$
\mu_{\epsilon}(\mathbf{x}) = \frac{1}{\epsilon^n} \phi_1\left(\frac{\mathbf{x}}{\epsilon}\right)
$$

satisfies supp $(\mu_{\epsilon}) = B_{\epsilon}(\mathbf{0})$ and $\int \mu_{\epsilon} = 1$.

Problem 8 Show that if U is a nonempty connected open subset of \mathbb{R}^n and $u : U \to \mathbb{R}$ satisfies $Du(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} \in \mathcal{U}$, then u is a constant function. Show (by example) that the assumption U is connected cannot be relaxed.

Problem 9 Let U be an open subset of \mathbb{R}^3 with $\mathbf{p} = (p_1, p_2, p_3) \in \mathcal{U}$. Consider the "epsilon cube" with center p given by

$$
\mathcal{U}_{\epsilon} = \mathcal{U}_{\epsilon}(\mathbf{p}) = \{ \mathbf{x} = (x_1, x_2, x_3) : |x_j - p_j| < \epsilon \text{ for } j = 1, 2, 3 \}.
$$

Let $\mathbf{v} = (v_1, v_2, v_3) \in C^1(\mathcal{U} \to \mathbb{R}^3)$ be a C^1 vector field on \mathcal{U} .

(a) Let $F = \{(p_1 + \epsilon, x_2, x_3) : |x_j - p_j| < \epsilon \text{ for } j = 2, 3\}$ be the front face of $\partial \mathcal{U}_{\epsilon}$. Define the back face B directly opposite F on $\partial \mathcal{U}_{\epsilon}$ and use the mean value theorem to show

$$
\int_{F \cup B} \mathbf{v} \cdot \mathbf{n} = 2\epsilon \int_{-\epsilon}^{\epsilon} \int_{-\epsilon}^{\epsilon} \frac{\partial v_1}{\partial x_1} (x_*, p_2 + y, p_3 + z) \, dy \, dz
$$

where $x_* = x_*(y, z)$ is some real number (depending on y and z) with $p_1 - \epsilon$ $x_* < p_1 + \epsilon.$

- (b) Write down similar expressions for the other two pairs of faces (top and bottom, left and right).
- (c) Compute the limit

$$
\lim_{\epsilon \searrow 0} \frac{1}{\mu(\mathcal{U}_{\epsilon})} \int_{\partial \mathcal{U}_{\epsilon}} \mathbf{v} \cdot \mathbf{n}
$$

to obtain the usual formula for div \bf{v} in standard rectangular coordinates.

Calculus of Variations

Problem 10 Let U be a bounded open subset of \mathbb{R}^n . Compute the first variation of the Dirichlet energy $\mathcal{D} : \mathcal{A} \to \mathbb{R}$ by

$$
\mathcal{D}[u]=\frac{1}{2}\int_{\mathcal{U}}|Du|^2
$$

where $\mathcal{A} = \{u \in C^1(\mathcal{U}) : u_{\vert_{\partial \mathcal{U}}} = g\}$ and $g \in C^0(\partial \mathcal{U})$ is fixed. Find the Euler-Lagrange PDE satisfied by C^2 extremals.

Notes/Solutions: On Problem 5 Part (c), Boas (almost certainly) intended $u =$ $u(x)$ to be defined by \mathbf{r} 1

$$
\frac{1}{u} + \frac{1}{x} = \frac{1}{y}
$$

and for the differential approximation to be based on

$$
-\frac{1}{u^2} du - \frac{1}{x^2} dx = 0
$$

so that

$$
du(\delta)=-\frac{u^2}{x^2}\delta
$$

and

$$
u(x+\delta) \approx u(x) - \frac{u(x)^2}{x^2} \delta.
$$

Another approach would be to write

$$
u(x) = \frac{1}{\frac{1/y}{x}} = \frac{xy}{x - y}
$$

so that

$$
u'(x) = \frac{y}{x-y} - \frac{xy}{(x-y)^2} = \frac{y(x-y) - xy}{(x-y)^2} = -\frac{y^2}{(x-y)^2}
$$

and

$$
du(\delta) = -\frac{y^2}{(x-y)^2} \delta.
$$

This leads to the approximation formula

$$
u(x+\delta) \approx \frac{xy}{x-y} - \frac{y^2}{(x-y)^2} \delta
$$

which looks quite different and involves y in particular. It amounts to the same thing, however, which you can see by remembering/noting

$$
u(x) = \frac{xy}{x - y}
$$
 and $\frac{y^2}{(x - y)^2} = \frac{1}{x^2} u(x)^2$.

Now, hopefully, it's more or less clear how to do the "enhanced" problem in two different ways. Your answer should involve a differential $du : \mathbb{R}^2 \to \mathbb{R}$.

Problem 7 Part (a) was a little trickier than might have been expected. One should first be careful to understand what it means for a function $f \in C_c^0(\mathbb{R})$ to have $\text{supp}(f) = [a, b]$. Note that such a closed interval $[a, b]$ must be a subset of R, so a and b are (finite) real numbers with, presumably, $a < b$. It may be considered that $a \leq b$, but if $a = b$, then $[a, b] = \{a\}$ is a singleton set, and it is impossible for such a set to be the support of a continuous function on R. (Since $f(x) \equiv 0$ for $x \notin \text{supp}(f)$, one would then get $f(a) = 0$ by continuity and, so, $f \equiv 0$ with supp $(f) = \phi$ (the empty set).

In any case, for this problem we have $a < b$ and $c < d$. The fact that supp $(f) =$ [a, b] does **not** mean $f(t) \neq 0$ for $t \in (a, b)$. We know, in fact, by continuity that $f(a) = f(b) = 0$. Remember that

$$
\mathrm{supp}(f) = \overline{\{t \in \mathbb{R} : f(t) \neq 0\}},
$$

and in our case $\{t \in \mathbb{R} : f(t) \neq 0\} = \{t \in \mathbb{R} : f(t) > 0\}$. But the important part to notice is the closure in the definition. What this does mean is that for $t \in \text{supp}(f)$ there must be points ξ arbitrarily close to t with $f(\xi) > 0$. Let us justify this assertion carefully:

If we assume there is some $\delta > 0$ for which $f(\xi) \equiv 0$ for $|\xi - t| < \delta$, then we know

$$
\{\xi \in \mathbb{R} : f(\xi) \neq 0\} \subset (-\infty, t - \delta] \bigcup [t + \delta, \infty). \tag{3}
$$

In fact, by continuity, we could make the stronger assertion

$$
\{\xi \in \mathbb{R} : f(\xi) \neq 0\} \subset (-\infty, t - \delta) \bigcup (t + \delta, \infty),
$$

but we are going to take a closure to get $\text{supp}(f)$ so it is of particular interest that the union of intervals in (3) is a closed set. More precisely,

$$
\operatorname{supp}(f) = \overline{\{t \in \mathbb{R} : f(t) \neq 0\}} \subset (-\infty, t - \delta] \bigcup [t + \delta, \infty) = A
$$

because the closure is the *smallest* closed set containing $\{t \in \mathbb{R} : f(t) \neq 0\}$, i.e., the intersection of all closed sets containing this given set, and A is one particular closed set containing $\{t \in \mathbb{R} : f(t) \neq 0\}$. We conclude from this that $t \notin \text{supp}(f)$ which is a contradiction since we started with $t \in \text{supp}(f)$.

Okay, so now we should understand what it means for t to be in $\text{supp}(f) = [a, b]$. Two more comments about this: (1) We did not use continuity in this discussion, so what we have said applies ot any function $f : \mathbb{R} \to \mathbb{R}$ with $\text{supp}(f) = [a, b]$ and (2) If the point in question is $t = a$ or $t = b$, then clearly the nearby points ξ with $f(\xi) \neq 0$ will have to be on a particular side of t (with $\xi > a$ if $t = a$ and $\xi < b$ if $t = b$).

Of course, all these same comments apply with g in place of f , c in place of a , and d in place of b.

At this point a first observation (the simple direction) is that supp $(f * g) \subset$ $[a + c, b + d]$. To see this, it is enough to show

$$
\{x\in\mathbb{R}:(f\ast g)(x)\neq 0\}\subset[a,b]
$$

or

$$
(f * g)(x) = \int_{t \in \mathbb{R}} f(t)g(x - t) = 0 \quad \text{for} \quad x \in (-\infty, a + c) \bigcup (b + d, \infty).
$$

We can see this as follows: If $x < a+c$, and $t \in (a, b)$, then $x-t < c$, so $g(x-t) = 0$. Similarly, if $x > b + d$, then $x - t > d$, so $g(x - t) = 0$. This shows that the function $h: \mathbb{R} \to \mathbb{R}$ by $h(t) = f(t)g(x-t)$ satisfies

$$
h(t)f(t)g(x-t) = 0 \quad \text{for } t \in (a, b).
$$

In fact, for $t \notin (a, b)$, we have $f(t) = 0$, so $h \equiv 0$ or

$$
(f * g)(x) = \int_{t \in \mathbb{R}} f(t)g(x - t) = \int_{a}^{b} f(t)g(x - t) dt = 0
$$

for $x \in (-\infty, a+c) \cup (b+d, \infty)$. Consequently, supp $(f * g) \subset [a+c, b+d]$. The reverse inclusion is the interesting part.

Presumably, it at least occurred to you that $\text{supp}(f * g) = [a + c, b + d]$. A less obvious assertion (and probably the easiest way to see the reverse inclusion) is that

$$
(f * g)(x) > 0
$$
 for $x \in (a + c, b + d)$. (4)

To see this it is enough to find, for each fixed $x \in (a+c, b+d)$, a single $t_* \in (a, b)$ for which $f(t_*)g(x-t) > 0$. This is because $h(t) = f(t)g(x-t)$ is a continuous function which is nonnegative and

$$
(f * g)(x) = \int_{a}^{b} f(t)g(x - t) dt = \int_{a}^{b} h(t) dt.
$$

Thus, if $h(t_*) > 0$, then $(f * q)(x) > 0$ and (4) holds.

How do we find such a t_* ? At first I thought you could pick any $t \in (a, b)$ for which $f(t) > 0$ and then use the continuity of f and the properties of supp $(q) = [c, d]$ discussed above to find a point t_* nearby t with $f(t_*) > 0$ by continuity and $g(x-t_*) >$ 0 because there are points $x - t_*$ nearby $x - t \in (c, d)$ for which $g(x - t_*) > 0$. The problem with this plan is that if we take any point $t \in (a, b)$ with $f(t) > 0$, this does not mean $x - t \in (c, d)$ (at all). Here is an example where this kind of thing can happen: If $[a, b] = [1, 4]$ and $[c, d] = [5, 6]$, then $[a + c, b + d] = [6, 10]$ and $x = 9 \in$ $(a+c, b+d) = (6, 10)$, but $t = 2 \in (a, b) = (1, 4)$ with $x-t = 9-2 = 7 \notin (c, d) = (5, 6)$.

So we cannot just pick any point t with $f(t) > 0$. We have to be careful about how we pick this first point. Here is a "trick" that helps us pick a point $t \in (a, b)$ that will work: Given $x \in (a+c, b+d)$, there is a unique $\lambda \in (0,1)$ with

$$
x = (1 - \lambda)(a + c) + \lambda(b + d). \tag{5}
$$

The expression (5) is called a **convex combination** of $a + c$ and $b + d$. Note that

$$
\lambda = \frac{x - (a + c)}{(b + d) - (a + c)}
$$
 is uniquely determined in (0, 1).

Thus λ is the ratio of the length of the first segment into which x divides the interval $[a + c, b + d]$ and the entire length of $[a + c, b + d]$. The trick is to take t_1 to be the point in (a, b) determined by the same ratio. That is,

$$
t_1 = (1 - \lambda)a + \lambda b.
$$

Then $x - t_1 = (1 - \lambda)c + \lambda d$ divides [c, d] into the same ratio and, in particular, is definitely in (c, d) . Because $t_1 \in (a, b) \subset \text{supp}(f)$, there is some $t_2 \in (a, b)$ close to t_1

with $f(t_2) > 0$. Now we would also like to have $x - t_2 \in (c, d)$. At this point, there is a second nice "trick" to accomplish what we want. Set

$$
\delta_1 = \min\{t_1 - a, b - t_1, (x - t_1) - c, d - (x - t_1)\}.
$$

This number $\delta_1 > 0$ and it has the property that if $|t - t_1| < \delta_1$, then $t_1 \in (a, b)$. Also, if $|\eta - (x - t_1)| < \delta_1$, then $\eta \in (c, d)$. Now we pick t_2 more precisely: Since $t_1 \in (a, b) \subset \text{supp}(f)$, there is some $t_2 \in (a, b)$ with

$$
|t_2 - t_1| < \delta_1
$$
 and $f(t_2) > 0$.

Setting $\eta_1 = x - t_1$ and $\eta_2 = x - t_2$, we see

$$
|\eta_2 - \eta_1| = |t_2 - t_1| < \delta_1,
$$

so by the property of δ_1 we also know $x - t_2 = \eta_2 \in (c, d)$.

We now have a point $t_2 \in (a, b)$ with $\eta_2 = x - t_2 \in (c, d)$ and $f(t_2) > 0$. Since $\eta_2 = x - t_2 \in (c, d) \subset \text{supp}(g)$ we can use the property of the support of g to find a point η_* nearby η_2 with $g(\eta_*) > 0$. Again, we need to do this somewhat carefully to maintain the conditions we've worked for above. Here we will use the second "trick" above along with the continuity of q . Let

$$
\delta_2 = \min\{t_2 - a, b - t_2, \eta_2 - c, d - \eta_2\} > 0.
$$

Since f is continuous and $f(t_2) > 0$, we can find $\delta > 0$ with

$$
\delta < \delta_2
$$
 and $f(t) > 0$ for $|t - t_2| < \delta$.

Let $\eta_* \in (c, d)$ with

$$
|\eta_* - \eta_2| < \delta < \delta_2 \qquad \text{and} \qquad g(\eta_*) > 0.
$$

We are using the fact that $\eta_2 \in \text{supp}(g)$ here. Now, consider $t_* = x - \eta_*$. Since $|t_* - t_2| = |\eta_* - \eta_2| < \delta$, we know from the continuity of f that

$$
f(t_*)>0.
$$

Naturally, this means $t_* \in (a, b)$, but we can also conclude this from the "tricky" property of δ_2 , since $\delta < \delta_2$. In any case, we also have $\eta_* = x - t_* \in (c, d)$ so that

$$
g(x - t_*) > 0.
$$

This means

$$
h(t_*) = f(t_*)g(x - t_*) > 0,
$$

and consequently $(f * g)(x) > 0$ by the continuity of h for fixed x. Thus, $(f * g)(x) > 0$ for $x \in (a + c, b + d)$ and $\text{supp}(f * g) = [a + c, b + d]$.

Note finally, that this last step uses the continuity of h which follows from the continuity of both f and g, though in the preceeding argument to find the point t_* we only used the continuity of f . Here is an interesting question:

What if the functions f and g are only in $L^1_{loc}(\mathbb{R})$? **Conjecture:** If $f, g \in L^1_{loc}(\mathbb{R})$ with $f, g \ge 0$, supp $(f) = [a, b]$ and supp $(g) = [c, d]$, then

$$
(f * g)(x) = \int_{t \in (a,b)} f(t)g(x - t) > 0 \quad \text{for } x \in (a + c, b + d).
$$