
MATH 6702 Assignment 4 = Exam 2

Due Monday March 22, 2021

John McCuan

March 23, 2021

Laplace’s Equation and Poisson’s Equation

Problem 1 (Boas 13.1.1) Recall Problem 1 and Problem 4 from Assignment 3. A
standard model of electrostatics involves the notions of charge density and electro-
static potential. The charge density is a function ρ : U → R where U is an open
subset of R3 having units

[ρ] =
[ charge ]

L3

so that the total charge in a region Ω ⊂ U is
∫

Ω

ρ.

The electrostatic potential is a function v : U → R having, first of all, the property
that the electric field on U is defined by

E = −∇v = −Dv.

The electrostatic potential, furthermore, has units

[v] =
[ energy ]

[ charge ]

so that ρv defines an energy density on U . Finally, the constant ǫ0 is called the
permittivity of free space and has units

[ǫ0] =
[ charge ]2

[ energy ]L
.
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(a) Find the units of

D[v] = ǫ0

∫

U

|Dv|2.

(b) Find the units of

E [v] =
∫

U

ρv.

(c) Interpret the extremization of H = D − E in terms of Hamilton’s principle.

(d) Assume ρ is given and find a PDE satisfied by an extremal v ∈ C2(U) of H.

(e) Write down a single PDE in the three unknown component functions of the field.

Problem 2 (uniqueness) Use the weak maximum principle (Problem 9 of Assign-
ment 3) to prove uniqueness for C2 solutions of Poisson’s equation: Let U be an open
bounded subset of R2. Let f ∈ C0(U) and g ∈ C0(∂U). If v, ṽ ∈ C2(U) ∩ C0(U), and
both v and ṽ satisfy the boundary value probem

{

∆u = f, on U
u∣
∣

∂U

= g,

then v ≡ ṽ. Hint: Consider w = v − ṽ and show w is a solution of a boundary value
problem for Laplace’s PDE.

Problem 3 (mean value property) Let U be an open subset of R2 and u ∈ C2(U) be
a solution of Laplace’s equation. Assume Br(x) ⊂ U . For 0 < a ≤ r, the mean value
of u on the boundary of Ba(x) is defined by

m(x; a) =
1

2πa

∫

∂Ba(x)

u.

The mean value of u on Br(x) is defined by

M(x; r) =
1

πr2

∫

Br(x)

u.

(a) Show
d

da
m(x; a) = 0.

Hint: Follow the following steps:
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(i) Change variables to express the integral over the circle ∂Ba(x), either, over
a unit circle or over the interval [0, 2π), and differentiate under the integral
sign.

(ii) Change variables back to ∂Ba(x) and use the divergence theorem.

(b) Show
M(x; r) ≡ m(x; a) ≡ u(x).

Hint(s): Change variables in the integral defining M to “generalized polar co-
ordinates” so that

∫

Br(x)

u =

∫ r

0

(
∫

∂Ba(x)

u

)

da.

Take a limit as a ց 0.

This result is called the mean value property for solutions of Laplace’s equation.

Problem 4 (separation of variables) Let r, L > 0 and f ∈ C0(−r, r) be given. Let
U = (−r, r)× (0, L) ⊂ R

2, and consider the boundary value problem
{

∆u = 0, on U
u∣
∣

x=±r

= 0 = u∣
∣

y=L

, u∣
∣

y=0

= f (1)

where f ∈ C0(−r, r).

(a) Assume you have a solution having the special product form u(x, y) = A(x)B(y).
Such a solution is called a separated variables solution. Show that given
such a solution the equation ∆u = 0 can be rearranged in the form

A′′

A
= −B′′

B
. (2)

(b) Prove that the relation (2) implies both the left and right sides are constant.

(c) The constant obtained in the previous part is called a separation constant.
Write down boundary value problems (ODEs) for A and B using the separation
constant and the boundary values from (1).

(d) One of the ODEs you have written down in the previous part can be used to
determine a monotonic infinite sequence

λ1, λ2, λ3, . . .

of permissible values of the separation constant.

(e) Find all separated variables solutions of the boundary value problem (1).
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Multivariable Calculus

Problem 5 (differential approximation; Boas4.4.1-3) Use differentials to accomplish
the following:

(a) Express the approximation formula

1

(n+ 1)3
− 1

n3
≈ − 3

n4
for n large

in terms of a differential mapping.

(b) Express the approximation formula

√
n+ a−

√
n ≈ a

2
√
n

for n large and a small

in terms of a differential mapping.

(c) Assume u = u(x, y) is determined by the formula

1

u
+

1

x
=

1

y
.

(i) Find a differential approximation formula

u(x+ δ, y + ǫ) for δ and ǫ small

in terms of x and y.

(ii) Express your approximation formula in terms of only x and u(x, y) (not
involving y assuming ǫ = 0.

Note: Part (c) is corrected from a previous incorrect attempt to “enhance”
Problem 3 of Section 4 in Chapter 4 of Boas. Further comments may be found
at the end of this assignment.

Problem 6 (integration and scaling)

(a) Let Ψ : [0,∞)× [0, π]× [0, 2π] → R
3 by

Ψ(r, φ, θ) = (r sin φ cos θ, r sinφ sin θ, r cosφ).

Compute the total derivativeDΨ of Ψ and the associated scaling factor according
to the first scaling principle.
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(b) (Boas 5.4.20) Use the change of variables

x = (ξ − η)/2

y = (ξ + η)/2

to evaluate the integral

∫ 1/2

0

∫ 1−x

x

(

x− y

x+ y

)2

dy dx.

(c) Let S be the surface parameterized by

X(u, v) = (u cos v, u sin v, v)

for 0 ≤ u ≤ 1 and 0 ≤ v ≤ π. Consider f : S → R by

f(p) = dist(p, L)

where L = {(0, 0, z) : z ∈ R} is the z-axis.

(i) Sketch (or produce a plot using mathematical software) of the surface S.
(ii) Use the second scaling principle to determine the scaling factor associated

with the mappint X.

(iii) Find
∫

S
f .

Problem 7 Assume the following:

(i) f, g ∈ C0(R).

(ii) f, g ≥ 0.

(iii) supp(f) = [a, b] and supp(g) = [c, d].

(a) Define f ∗ g : R → R by

(f ∗ g)(x) =
∫ ∞

−∞

f(ξ)g(x− ξ) dξ.

determine supp(f ∗ g).
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(b) Assume φ1 ∈ C∞
c (R) with supp(φ1) = [−1, 1] and

∫

φ1 = 1. Show that for each
ǫ > 0, the function µǫ : R

1 → R by

µǫ(x) =
1

ǫ
φ1

(x

ǫ

)

satisfies supp(µǫ) = [−ǫ, ǫ] and
∫

µǫ = 1.

(c) Assume φ1 ∈ C∞
c (Rn) with supp(φ1) = B1(0) and

∫

φ1 = 1. Show that for each
ǫ > 0, the function µǫ : R

n → R by

µǫ(x) =
1

ǫn
φ1

(x

ǫ

)

satisfies supp(µǫ) = Bǫ(0) and
∫

µǫ = 1.

Problem 8 Show that if U is a nonempty connected open subset of Rn and u : U → R

satisfies Du(x) = 0 for x ∈ U , then u is a constant function. Show (by example) that
the assumption U is connected cannot be relaxed.

Problem 9 Let U be an open subset of R3 with p = (p1, p2, p3) ∈ U . Consider the
“epsilon cube” with center p given by

Uǫ = Uǫ(p) = {x = (x1, x2, x3) : |xj − pj| < ǫ for j = 1, 2, 3}.

Let v = (v1, v2, v3) ∈ C1(U → R
3) be a C1 vector field on U .

(a) Let F = {(p1+ǫ, x2, x3) : |xj−pj | < ǫ for j = 2, 3} be the front face of ∂Uǫ. Define
the back face B directly opposite F on ∂Uǫ and use the mean value theorem to
show

∫

F∪B

v · n = 2ǫ

∫ ǫ

−ǫ

∫ ǫ

−ǫ

∂v1
∂x1

(x∗, p2 + y, p3 + z) dy dz

where x∗ = x∗(y, z) is some real number (depending on y and z) with p1 − ǫ <
x∗ < p1 + ǫ.

(b) Write down similar expressions for the other two pairs of faces (top and bottom,
left and right).

(c) Compute the limit

lim
ǫց0

1

µ(Uǫ)

∫

∂Uǫ

v · n

to obtain the usual formula for div v in standard rectangular coordinates.
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Calculus of Variations

Problem 10 Let U be a bounded open subset of Rn. Compute the first variation of
the Dirichlet energy D : A → R by

D[u] =
1

2

∫

U

|Du|2

where A = {u ∈ C1(U) : u∣
∣

∂U

= g} and g ∈ C0(∂U) is fixed. Find the Euler-Lagrange

PDE satisfied by C2 extremals.

Notes/Solutions: On Problem 5 Part (c), Boas (almost certainly) intended u =
u(x) to be defined by

1

u
+

1

x
=

1

y

and for the differential approximation to be based on

− 1

u2
du− 1

x2
dx = 0

so that

du(δ) = −u2

x2
δ

and

u(x+ δ) ≈ u(x)− u(x)2

x2
δ.

Another approach would be to write

u(x) =
1

1/y
−

1
x

=
xy

x− y

so that

u′(x) =
y

x− y
− xy

(x− y)2
=

y(x− y)− xy

(x− y)2
= − y2

(x− y)2

and

du(δ) = − y2

(x− y)2
δ.
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This leads to the approximation formula

u(x+ δ) ≈ xy

x− y
− y2

(x− y)2
δ

which looks quite different and involves y in particular. It amounts to the same thing,
however, which you can see by remembering/noting

u(x) =
xy

x− y
and

y2

(x− y)2
=

1

x2
u(x)2.

Now, hopefully, it’s more or less clear how to do the “enhanced” problem in two
different ways. Your answer should involve a differential du : R2 → R.

Problem 7 Part (a) was a little trickier than might have been expected. One
should first be careful to understand what it means for a function f ∈ C0

c (R) to have
supp(f) = [a, b]. Note that such a closed interval [a, b] must be a subset of R, so a
and b are (finite) real numbers with, presumably, a < b. It may be considered that
a ≤ b, but if a = b, then [a, b] = {a} is a singleton set, and it is impossible for such a
set to be the support of a continuous function on R. (Since f(x) ≡ 0 for x /∈ supp(f),
one would then get f(a) = 0 by continuity and, so, f ≡ 0 with supp(f) = φ (the
empty set).

In any case, for this problem we have a < b and c < d. The fact that supp(f) =
[a, b] does not mean f(t) 6= 0 for t ∈ (a, b). We know, in fact, by continuity that
f(a) = f(b) = 0. Remember that

supp(f) = {t ∈ R : f(t) 6= 0},

and in our case {t ∈ R : f(t) 6= 0} = {t ∈ R : f(t) > 0}. But the important part to
notice is the closure in the definition. What this does mean is that for t ∈ supp(f)
there must be points ξ arbitrarily close to t with f(ξ) > 0. Let us justify this assertion
carefully:

If we assume there is some δ > 0 for which f(ξ) ≡ 0 for |ξ− t| < δ, then we know

{ξ ∈ R : f(ξ) 6= 0} ⊂ (−∞, t− δ]
⋃

[t + δ,∞). (3)

In fact, by continuity, we could make the stronger assertion

{ξ ∈ R : f(ξ) 6= 0} ⊂ (−∞, t− δ)
⋃

(t+ δ,∞),
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but we are going to take a closure to get supp(f) so it is of particular interest that
the union of intervals in (3) is a closed set. More precisely,

supp(f) = {t ∈ R : f(t) 6= 0} ⊂ (−∞, t− δ]
⋃

[t+ δ,∞) = A

because the closure is the smallest closed set containing {t ∈ R : f(t) 6= 0}, i.e., the
intersection of all closed sets containing this given set, and A is one particular closed
set containing {t ∈ R : f(t) 6= 0}. We conclude from this that t /∈ supp(f) which is a
contradiction since we started with t ∈ supp(f).

Okay, so now we should understand what it means for t to be in supp(f) = [a, b].
Two more comments about this: (1) We did not use continuity in this discussion, so
what we have said applies ot any function f : R → R with supp(f) = [a, b] and (2) If
the point in question is t = a or t = b, then clearly the nearby points ξ with f(ξ) 6= 0
will have to be on a particular side of t (with ξ > a if t = a and ξ < b if t = b).

Of course, all these same comments apply with g in place of f , c in place of a,
and d in place of b.

At this point a first observation (the simple direction) is that supp(f ∗ g) ⊂
[a+ c, b+ d]. To see this, it is enough to show

{x ∈ R : (f ∗ g)(x) 6= 0} ⊂ [a, b]

or

(f ∗ g)(x) =
∫

t∈R

f(t)g(x− t) = 0 for x ∈ (−∞, a+ c)
⋃

(b+ d,∞).

We can see this as follows: If x < a+ c, and t ∈ (a, b), then x− t < c, so g(x− t) = 0.
Similarly, if x > b+ d, then x− t > d, so g(x− t) = 0. This shows that the function
h : R → R by h(t) = f(t)g(x− t) satisfies

h(t)f(t)g(x− t) = 0 for t ∈ (a, b).

In fact, for t /∈ (a, b), we have f(t) = 0, so h ≡ 0 or

(f ∗ g)(x) =
∫

t∈R

f(t)g(x− t) =

∫ b

a

f(t)g(x− t) dt = 0

for x ∈ (−∞, a + c) ∪ (b + d,∞). Consequently, supp(f ∗ g) ⊂ [a + c, b + d]. The
reverse inclusion is the interesting part.

9



Presumably, it at least occurred to you that supp(f ∗ g) = [a + c, b + d]. A less
obvious assertion (and probably the easiest way to see the reverse inclusion) is that

(f ∗ g)(x) > 0 for x ∈ (a + c, b+ d). (4)

To see this it is enough to find, for each fixed x ∈ (a+ c, b+ d), a single t∗ ∈ (a, b) for
which f(t∗)g(x− t) > 0. This is because h(t) = f(t)g(x− t) is a continuous function
which is nonnegative and

(f ∗ g)(x) =
∫ b

a

f(t)g(x− t) dt =

∫ b

a

h(t) dt.

Thus, if h(t∗) > 0, then (f ∗ g)(x) > 0 and (4) holds.
How do we find such a t∗? At first I thought you could pick any t ∈ (a, b) for

which f(t) > 0 and then use the continuity of f and the properties of supp(g) = [c, d]
discussed above to find a point t∗ nearby t with f(t∗) > 0 by continuity and g(x−t∗) >
0 because there are points x− t∗ nearby x − t ∈ (c, d) for which g(x− t∗) > 0. The
problem with this plan is that if we take any point t ∈ (a, b) with f(t) > 0, this does
not mean x − t ∈ (c, d) (at all). Here is an example where this kind of thing can
happen: If [a, b] = [1, 4] and [c, d] = [5, 6], then [a + c, b + d] = [6, 10] and x = 9 ∈
(a+c, b+d) = (6, 10), but t = 2 ∈ (a, b) = (1, 4) with x−t = 9−2 = 7 /∈ (c, d) = (5, 6).

So we cannot just pick any point t with f(t) > 0. We have to be careful about
how we pick this first point. Here is a “trick” that helps us pick a point t ∈ (a, b)
that will work: Given x ∈ (a + c, b+ d), there is a unique λ ∈ (0, 1) with

x = (1− λ)(a+ c) + λ(b+ d). (5)

The expression (5) is called a convex combination of a+ c and b+ d. Note that

λ =
x− (a+ c)

(b+ d)− (a+ c)
is uniquely determined in (0, 1).

Thus λ is the ratio of the length of the first segment into which x divides the interval
[a + c, b + d] and the entire length of [a + c, b + d]. The trick is to take t1 to be the
point in (a, b) determined by the same ratio. That is,

t1 = (1− λ)a+ λb.

Then x − t1 = (1 − λ)c + λd divides [c, d] into the same ratio and, in particular, is
definitely in (c, d). Because t1 ∈ (a, b) ⊂ supp(f), there is some t2 ∈ (a, b) close to t1
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with f(t2) > 0. Now we would also like to have x − t2 ∈ (c, d). At this point, there
is a second nice “trick” to accomplish what we want. Set

δ1 = min{t1 − a, b− t1, (x− t1)− c, d− (x− t1)}.

This number δ1 > 0 and it has the property that if |t − t1| < δ1, then t1 ∈ (a, b).
Also, if |η − (x − t1)| < δ1, then η ∈ (c, d). Now we pick t2 more precisely: Since
t1 ∈ (a, b) ⊂ supp(f), there is some t2 ∈ (a, b) with

|t2 − t1| < δ1 and f(t2) > 0.

Setting η1 = x− t1 and η2 = x− t2, we see

|η2 − η1| = |t2 − t1| < δ1,

so by the property of δ1 we also know x− t2 = η2 ∈ (c, d).
We now have a point t2 ∈ (a, b) with η2 = x − t2 ∈ (c, d) and f(t2) > 0. Since

η2 = x − t2 ∈ (c, d) ⊂ supp(g) we can use the property of the support of g to find a
point η∗ nearby η2 with g(η∗) > 0. Again, we need to do this somewhat carefully to
maintain the conditions we’ve worked for above. Here we will use the second “trick”
above along with the continuity of g. Let

δ2 = min{t2 − a, b− t2, η2 − c, d− η2} > 0.

Since f is continuous and f(t2) > 0, we can find δ > 0 with

δ < δ2 and f(t) > 0 for |t− t2| < δ.

Let η∗ ∈ (c, d) with

|η∗ − η2| < δ < δ2 and g(η∗) > 0.

We are using the fact that η2 ∈ supp(g) here. Now, consider t∗ = x − η∗. Since
|t∗ − t2| = |η∗ − η2| < δ, we know from the continuity of f that

f(t∗) > 0.

Naturally, this means t∗ ∈ (a, b), but we can also conclude this from the “tricky”
property of δ2, since δ < δ2. In any case, we also have η∗ = x− t∗ ∈ (c, d) so that

g(x− t∗) > 0.
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This means
h(t∗) = f(t∗)g(x− t∗) > 0,

and consequently (f ∗g)(x) > 0 by the continuity of h for fixed x. Thus, (f ∗g)(x) > 0
for x ∈ (a+ c, b+ d) and supp(f ∗ g) = [a+ c, b+ d].

Note finally, that this last step uses the continuity of h which follows from the
continuity of both f and g, though in the preceeding argument to find the point t∗
we only used the continuity of f . Here is an interesting question:

What if the functions f and g are only in L1
loc(R)?

Conjecture: If f, g ∈ L1
loc(R) with f, g ≥ 0, supp(f) = [a, b] and supp(g) = [c, d],

then

(f ∗ g)(x) =
∫

t∈(a,b)

f(t)g(x− t) > 0 for x ∈ (a+ c, b+ d).
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