MATH 6702 Assignment 4 = Exam 2
Due Monday March 22, 2021

John McCuan
March 23, 2021

Laplace’s Equation and Poisson’s Equation

Problem 1 (Boas 153.1.1) Recall Problem 1 and Problem j from Assignment 3. A
standard model of electrostatics involves the notions of charge density and electro-
static potential. The charge density is a function p : U — R where U is an open
subset of R® having units

] = L]

so that the total charge in a region 2 C U 1is

Lo

The electrostatic potential is a function v : U — R having, first of all, the property
that the electric field on U is defined by

E=—-Vv=—-Duv.
The electrostatic potential, furthermore, has units
[ energy |
[v] = ——
[ charge |

so that pv defines an energy density on U. Finally, the constant €y is called the
permittivity of free space and has units

[ charge |?

[eo] =

[ energy | L
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(a) Find the units of
Dlv] 260/ | Dvl?,

u

] = /upv.

(c) Interpret the extremization of H = D — & in terms of Hamilton’s principle.

(b) Find the units of

(d) Assume p is given and find a PDE satisfied by an extremal v € C*(U) of H.

(e) Write down a single PDE in the three unknown component functions of the field.

Problem 2 (uniqueness) Use the weak mazimum principle (Problem 9 of Assign-
ment 3) to prove uniqueness for C* solutions of Poisson’s equation: Let U be an open
bounded subset of R%. Let f € C°(U) and g € C°(OU). If v, € C*(U) N C(U), and
both v and v satisfy the boundary value probem

Au = f, onU
U‘ =9,

ou

then v =v. Hint: Consider w = v — v and show w is a solution of a boundary value
problem for Laplace’s PDE.

Problem 3 (mean value property) Let U be an open subset of R? and u € C*(U) be

a solution of Laplace’s equation. Assume B,.(x) CU. For 0 < a < r, the mean value
of u on the boundary of B,(x) is defined by

o) =5 |
mxia) = —— u.
’ 2wa 0B (x)

The mean value of u on B,(x) is defined by

1
M(x;r) = —2/ u.
mwr B (x)

(a) Show
—m(x;a) =

Hint: Follow the following steps:



(i) Change variables to express the integral over the circle 0B,(x), either, over
a unit circle or over the interval [0, 27), and differentiate under the integral
S4gmn.
(ii) Change variables back to OB, (x) and use the divergence theorem.
(b) Show
M(x;7) = m(x;a) = u(x).
Hint(s): Change variables in the integral defining M to “generalized polar co-

ordinates” so that .
/ U = / ( / u) da.
By (x) 0 9Ba(x)
Take a limit as a 0.

This result is called the mean value property for solutions of Laplace’s equation.

Problem 4 (separation of variables) Let v, L > 0 and f € C°(—r,r) be given. Let
U= (—r,7)x (0,L) C R?, and consider the boundary value problem
Au =0, onU

y=L

r==%r
where f € CO(—r,7).

(a) Assume you have a solution having the special product form u(x,y) = A(z)B(y).
Such a solution is called a separated variables solution. Show that given
such a solution the equation Au = 0 can be rearranged in the form

A// B//

A5 2

T 5 (2)
(b) Prove that the relation (2) implies both the left and right sides are constant.

(c) The constant obtained in the previous part is called a separation constant.
Write down boundary value problems (ODEs) for A and B using the separation
constant and the boundary values from (1).

(d) One of the ODEs you have written down in the previous part can be used to
determine a monotonic infinite sequence

)\la )\Za )\3a cee
of permissible values of the separation constant.

(e) Find all separated variables solutions of the boundary value problem (1).



Multivariable Calculus

Problem 5 (differential approximation; Boas4.4.1-3) Use differentials to accomplish
the following:
(a) Ezpress the approzimation formula
1 1 3 I ]
—_— - orn large
(n+1)3 n? nt J

in terms of a differential mapping.

(b) Express the approzimation formula

Vn+a—/n=x . forn large and a small
2y/n

in terms of a differential mapping.
(c) Assume u = u(x,y) is determined by the formula

1 1 1

uoor oy
(1) Find a differential approzimation formula
u(z + 0,y + ¢€) for ¢ and e small

in terms of x and y.

(ii) Ezpress your approximation formula in terms of only x and u(x,y) (not
wmnwvolving y assuming € = 0.

Note: Part (c) is corrected from a previous incorrect attempt to “enhance”
Problem 3 of Section 4 in Chapter 4 of Boas. Further comments may be found
at the end of this assignment.

Problem 6 (integration and scaling)
(a) Let U :[0,00) x [0,7] x [0,27] — R3 by
U(r,¢,0) = (rsin¢cos,rsin¢sinb, rcos ).

Compute the total derivative DV of U and the associated scaling factor according
to the first scaling principle.



(b) (Boas 5.4.20) Use the change of variables

to evaluate the integral

/ / (x+3)2 e

(c) Let S be the surface parameterized by
X(u,v) = (ucosv,usinv,v)
forO0<u<1and0<v<m. Consider f:S — R by
f(p) = dist(p, L)
where L = {(0,0,2) : z € R} is the z-axis.

(i) Sketch (or produce a plot using mathematical software) of the surface S.

(ii) Use the second scaling principle to determine the scaling factor associated
with the mappint X .

(iii) Find [ f
Problem 7 Assume the following:
(i) f,9€ C'(R).
(i) f,g>0.
(iii) supp(f) = [a,b] and supp(g) = [c, d].

(a) Define fxg:R —=TR by

(f * 9)a /f oz — €) de.

determine supp(f * g).



(b) Assume ¢ € C°(R) with supp(¢1) = [—1,1] and [ ¢1 = 1. Show that for each
€ >0, the function ju. : Rt — R by

1 x
i) = 2o (3)
satisfies supp(pe) = [—¢€, €] and [y =1.
(c) Assume ¢ € C(R™) with supp(¢1) = B1(0) and [ ¢1 = 1. Show that for each
e >0, the function p.: R™ — R by

pex) = =-n (%)

satisfies supp(pe) = B(0) and [ pe = 1.

Problem 8 Show that if U is a nonempty connected open subset of R™ andu : U — R
satisfies Du(x) = 0 for x € U, then u is a constant function. Show (by example) that
the assumption U is connected cannot be relazed.

Problem 9 Let U be an open subset of R® with p = (p1,p2, p3) € U. Consider the
“epsilon cube” with center p given by

U =U(p) = {x = (z1, 22, 23) : |z; — p;| <€ forj=1,23}
Let v = (vi,vy,v3) € CHU — R3) be a C* vector field on U.

(a) Let F = {(p1+e,x2,x3) : |xj—p,| < € for j = 2,3} be the front face of OU.. Define
the back face B directly opposite F' on OU. and use the mean value theorem to

show < rep
/ V-n:26/ / ﬂ(x*apzﬂLyaps‘f‘Z)dde
FUB o) e Ox

where x, = x,(y, z) is some real number (depending on y and z) with py — € <
T, < pp+e

(b) Write down similar expressions for the other two pairs of faces (top and bottom,
left and right).

(c) Compute the limit

lim — /
m vV-n
eN0 (UE) U

to obtain the usual formula for divv in standard rectangular coordinates.
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Calculus of Variations
Problem 10 Let U be a bounded open subset of R™. Compute the first variation of

the Dirichlet energy D : A — R by
1 2
Dl = = [ 1Dyl
2 Ju

where A = {u € C'(U) : u‘ =g} and g € C°(OU) is fized. Find the Euler-Lagrange
Ie]
PDE satisfied by C* estremals.

Notes/Solutions: On Problem 5 Part (c), Boas (almost certainly) intended w

u(z) to be defined by
11 1

uoor oy

and for the differential approximation to be based on

1 1
0 du — = dr =
so that ,
u
du(d) = ——¢
x
and )
u(r +0) = u(x) — u(;z) )
Another approach would be to write
1wy
so that )
B P A _yle—y -z oy
z—y (vr—y) (x —y)? (x —y)?
and )
du(8) = ——.
(z —y)



This leads to the approximation formula

2
u(x +9) = SLAN S

r—y (r—y)?

which looks quite different and involves y in particular. It amounts to the same thing,
however, which you can see by remembering /noting
Ty y 1

u(:)s):x_y and m—ﬁu(x) .

Now, hopefully, it’s more or less clear how to do the “enhanced” problem in two
different ways. Your answer should involve a differential du : R? — R.

Problem 7 Part (a) was a little trickier than might have been expected. One
should first be careful to understand what it means for a function f € C(R) to have
supp(f) = [a,b]. Note that such a closed interval [a,b] must be a subset of R, so a
and b are (finite) real numbers with, presumably, a < b. It may be considered that
a < b, but if a = b, then [a,b] = {a} is a singleton set, and it is impossible for such a
set to be the support of a continuous function on R. (Since f(x) = 0 for = ¢ supp(f),
one would then get f(a) = 0 by continuity and, so, f = 0 with supp(f) = ¢ (the
empty set).

In any case, for this problem we have a < b and ¢ < d. The fact that supp(f) =
la,b] does not mean f(t) # 0 for t € (a,b). We know, in fact, by continuity that
f(a) = f(b) = 0. Remember that

supp(f) = {t € R: f(t) # 0},

and in our case {t € R: f(t) #0} = {t € R: f(¢t) > 0}. But the important part to
notice is the closure in the definition. What this does mean is that for ¢t € supp(f)
there must be points £ arbitrarily close to ¢ with f(£) > 0. Let us justify this assertion
carefully:

If we assume there is some § > 0 for which f(£) = 0 for [£ — ] < §, then we know

{E€R: f(§) #0} C (—o0,t — 8] It + 6, 00). (3)

In fact, by continuity, we could make the stronger assertion
{E€R:f(€) # 0} C (—o0,t = 8) [ it +0,00),
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but we are going to take a closure to get supp(f) so it is of particular interest that
the union of intervals in (3) is a closed set. More precisely,

supp(f) = {t € R: f(t) # 0} C (—o0,t — 8] J[t +,00) = A

because the closure is the smallest closed set containing {t € R : f(t) # 0}, i.e., the
intersection of all closed sets containing this given set, and A is one particular closed
set containing {t € R : f(¢) # 0}. We conclude from this that ¢ ¢ supp(f) which is a
contradiction since we started with ¢ € supp(f).

Okay, so now we should understand what it means for ¢ to be in supp(f) = [a, b].
Two more comments about this: (1) We did not use continuity in this discussion, so
what we have said applies ot any function f : R — R with supp(f) = [a, b] and (2) If
the point in question is t = a or t = b, then clearly the nearby points & with f(£) # 0
will have to be on a particular side of ¢ (with £ > a ift =a and £ < b if t = D).

Of course, all these same comments apply with ¢ in place of f, ¢ in place of a,
and d in place of b.

At this point a first observation (the simple direction) is that supp(f * g) C
la + ¢,b+ d]. To see this, it is enough to show

{zreR:(f*g)(x) # 0} Cla,b]

or
(f*g)(x / f(t)g(x —1t) for xe(—oo,a+c)U(b+d,oo).

We can see this as follows: If x < a+¢, and t € (a,b), then x —t < ¢, so g(z —t) = 0.
Similarly, if z > b+ d, then x —t > d, so g(x — t) = 0. This shows that the function
h:R — R by h(t) = f(t)g(x — t) satisfies

h(t)f(t)g(z —t) =0 for t € (a,b).

In fact, for t ¢ (a,b), we have f(t) =0, s0o h =0 or

(f*xg)(x / f(t)g(x —1t) /f (x—t)dt=0

for z € (—oo0,a+ ¢) U (b+ d,00). Consequently, supp(f * g) C [a + ¢,b+ d]. The
reverse inclusion is the interesting part.



Presumably, it at least occurred to you that supp(f *g) = [a + ¢,b+ d]. A less
obvious assertion (and probably the easiest way to see the reverse inclusion) is that

(f*g)(x)>0 for x € (a+c¢,b+d). (4)

To see this it is enough to find, for each fixed x € (a+ ¢, b+d), a single t. € (a,b) for
which f(t,)g(z —t) > 0. This is because h(t) = f(t)g(z —t) is a continuous function
which is nonnegative and

(f * ) /f (z— ) dt = /h()d

Thus, if h(t,) > 0, then (f % g)(x) > 0 and (4) holds.

How do we find such a .7 At first I thought you could pick any t € (a,b) for
which f(¢) > 0 and then use the continuity of f and the properties of supp(g) = [c, d]
discussed above to find a point ¢, nearby ¢t with f(¢.) > 0 by continuity and g(x—t,) >
0 because there are points x — t, nearby z — ¢ € (¢, d) for which g(z — ¢,) > 0. The
problem with this plan is that if we take any point ¢ € (a,b) with f(¢) > 0, this does
not mean x —t € (¢,d) (at all). Here is an example where this kind of thing can
happen: If [a,b] = [1,4] and [c,d] = [5,6], then [a + ¢,b+ d] = [6,10] and x = 9 €
(a+ec,b+d) = (6,10), but t =2 € (a,b) = (1,4) withx—t =9-2=7¢ (¢,d) = (5,6).

So we cannot just pick any point ¢ with f(¢) > 0. We have to be careful about
how we pick this first point. Here is a “trick” that helps us pick a point t € (a,b)
that will work: Given x € (a + ¢, b+ d), there is a unique A € (0,1) with

=1 =XN(a+c)+Ab+d). (5)
The expression (5) is called a convex combination of a + ¢ and b + d. Note that

—(a+c¢)

= 0+ d (a0 is uniquely determined in (0, 1).

Thus A is the ratio of the length of the first segment into which = divides the interval
la + ¢, b+ d] and the entire length of [a + ¢, b+ d]|. The trick is to take ¢; to be the
point in (a,b) determined by the same ratio. That is,

Then z —t; = (1 — A\)c + Ad divides [c,d] into the same ratio and, in particular, is
definitely in (¢, d). Because t; € (a,b) C supp(f), there is some ¢y € (a,b) close to t;
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with f(t2) > 0. Now we would also like to have = — ¢, € (¢,d). At this point, there
is a second nice “trick” to accomplish what we want. Set

51 = min{t1 — CL,b — tl, (LU — tl) — C,d— (SL’ — tl)}

This number 0; > 0 and it has the property that if |t — ¢;| < 0y, then ¢, € (a,b).
Also, if |n — (x — t1)| < 01, then n € (¢,d). Now we pick ¢t more precisely: Since
t1 € (a,b) C supp(f), there is some ty € (a,b) with

|t2 — t1| < 51 and f(tg) > 0.
Setting 1, = x — t; and 1, = x — 19, we see
112 — M| = [ta — t1] < 61,

so by the property of d; we also know = — ty = ny € (¢, d).

We now have a point ¢ty € (a,b) with 9, = x — t5 € (¢,d) and f(t3) > 0. Since
ny =x —ty € (¢,d) C supp(g) we can use the property of the support of ¢ to find a
point 7, nearby 7y with g(n.) > 0. Again, we need to do this somewhat carefully to
maintain the conditions we’ve worked for above. Here we will use the second “trick”
above along with the continuity of g. Let

dy = min{ty — a,b —to,my — c,d — 19} > 0.
Since f is continuous and f(t5) > 0, we can find § > 0 with
d < 09 and f(t) >0 for |t —ta| < 0.
Let n. € (¢, d) with
[N — ma] < 0 < 9 and g(n.) > 0.

We are using the fact that 7, € supp(g) here. Now, consider t, = = — 7,. Since
|t. — ta] = [n — 2] < d, we know from the continuity of f that

f(t.) > 0.

Naturally, this means ¢, € (a,b), but we can also conclude this from the “tricky”
property of dy, since d < dy. In any case, we also have 1, = x — t, € (¢,d) so that

gz —t,) > 0.
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This means
h(t.) = f(t.)g(x —t.) >0,

and consequently (f=*g)(x) > 0 by the continuity of h for fixed x. Thus, (f*g)(x) > 0
for x € (a4 ¢,b+d) and supp(f * g) = [a+ ¢,b+ d].

Note finally, that this last step uses the continuity of h which follows from the
continuity of both f and g, though in the preceeding argument to find the point t,
we only used the continuity of f. Here is an interesting question:

What if the functions f and g are only in L] (R)?

Conjecture: If f,g € L} (R) with f,g > 0, supp(f) = [a, ] and supp(g) = [c, d],
then

(f*g)(x):/te( J09E=0>0  forzeatebta)
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