
Assignment 3 = Exam 1:

Solutions 2, 3, 5, 7, 8, 9

Due Friday, February 7, 2025

John McCuan

March 13, 2025

Problem 1 (density and the hanging slinky) It was very nicely pointed out in class
that the “density of coils” is not constant in a hanging slinky.

(a) Given an initial equilibrium height h0 of a slinky (sitting on a table for example)
define a constant linear mass density ρ0 in terms of the total mass M of the
slinky and the height h0.

(b) Let σ : [0, h0] → [0,∞) denote a model measurement (stretch) function based on
the height h0 for the hanging slinky as described in my solution of Problem 1
of Assignment 1. Find a linear mass density function ρ : [0, h0] → [0,∞)
giving/modeling the mass density at a material point in the hanging slinky
corresponding to the stretch value σ(h) for 0 ≤ h ≤ h0. Give your answer in
terms of ρ0 and σ. Hint: Let δ > 0 and consider the portion of the hanging
slinky between X3(h− δ) = −σ(h − δ) and X3(h + δ) = −σ(h + δ). How long
is this portion of the hanging slinky and what is its mass?

(c) Formulate a notion of “density of coils” ρc : [0, h0] → [0,∞) for the hanging
slinky and find a formula for ρc in terms of ρ.

Solution:

(a) ρ0 = M/h0.

(b) Consider the portion of slinky between x and x+ δ in equilibrium. This section
should have mass δρ0. Also, when the slinky is stretched, the mass of the
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stretched portion should be exactly δρ0. However, the length will have changed
to σ(x + δ) − σ(x). Therefore, the average lineal mass density for this section
of stretched spring should be

δρ0
σ(x+ δ)− σ(x)

= ρ0

/

σ(x+ δ)− σ(x)

δ
.

The limit of this quantity should model reasonably well the linear mass density
ρ : [0, h0] → R of the slinky stretched into a position modeled by σ, that is

ρ(x) =
ρ0

σ′(x)
.

We might worry about the vanishing of σ′ here, but in fact, it is physically
natural to assume σ′(x) ≥ 1 for all x.

(c) In my solution to Problem 1 of Assignment 1 I noted that there were 78.75 coils,
so a natural notion of “density of coils” is

number of coils

length of slinky

with the equilibrium density at 78.75/h0. Computing in a manner similar to
that above for mass density, we find

ρc(x) =
78.75

h0σ′(x)
=

1

mc
ρ(x)

where mc = M/78.75 ≈ 0.218/78.75
.
= 0.002768kg is the mass of one coil.
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Recall the existence and uniqueness theorem for a single ordinary differential equa-
tion (ODE):

Theorem 1 If (t0, y0) ∈ (a, b) × (c, d) and F : (c, d) × (a, b) → R satisfies F ∈
C0((c, d)× (a, b)) and

∂F

∂y
∈ C0((c, d)× (a, b)),

then there is some δ > 0 for which the initial value problem (IVP)
{

y′ = F (y, t), t0 − δ < t < t0 + δ
y(t0) = y0,

(1)

has a unique solution y ∈ C1(t0 − δ, t0 + δ).

Problem 2 (finite time blow-up) Consider the IVP
{

y′ = y2

y(3) = 7.
(2)

(a) Explain carefully and clearly what Theorem 1 tells you (to expect) about this
problem. Clearly identify t0, y0 and the intervals (a, b) and (c, d).

(b) According to the statement of Theorem 1, list the quantities upon which you
might expect the number δ to depend.

(c) Solve the IVP
{

y′ = y2

y(t0) = y0
(3)

where y0 and t0 are given real numbers.

Solution:

(a) The initial time is t0 = 3. The initial value is y0 = 7. The structure function is
F (y, t) = y2 and the natural domain of regularity for this function is R2 = R×R

with (a, b) = (c, d) = (−∞,∞) = R. Theorem 1 asserts that there exists some
δ > 0 for which the initial value problem

{

y′ = y2, 3− δ < t < 3 + δ
y(3) = 7

has a unique solution y : (3− δ, 3 + δ) → R with y ∈ C1(3− δ, 3 + δ).
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(b) According to the statement of the theorem, the half-length of the interval of ex-
istence might depend on the constants a, b, c, d, t0, y0 and the structure function
F .

(c) If y0 = 0, then notice y ∈ C∞(R) with y(t) ≡ 0 for all t is a solution of the
problem.

We can see this is the unique solution of the problem in this case as follows:
Assume y1 ∈ C1(T1, T2) is a different solution of

{

y′ = y2, T1 < t < T2

y(t0) = y0

for some T1 and T2 with T1 < t0 < T2. Taking δ1 = min{δ, T2 − t0, t0 − T1}
where δ is the half length of existence and uniqueness given by application of
Theorem 1 to the problem, we know y1(t) ≡ 0 for |t− t0| < δ1. This is from the
uniqueness assertion of Theorem 1. Letting tmax = sup{t > t0 : y1(t) ≡ 0}, one
possibility is that tmax = T2, and we know y1(t) ≡ 0 for t0 − δ1 < t < T2. Let’s
remember that possibility for later.

The other possibility is tmax < T2. In this case, y1(tmax) is a well-defined number,
and we know

y1(tmax) = lim
tրtmax

y1(t) = 0.

Accordingly, we consider the IVP

{

y′ = y2

y(tmax) = 0.

Applying Theorem 1 to this problem, we obtain some δ2 > 0 for which

{

y′ = y2, tmax − δ2 < t < tmax + δ2
y(tmax) = 0

has a unique solution, and we know that solution satisfies y(t) ≡ 0. In particular
there must hold

y1(t) ≡ 0 for tmax ≤ t ≤ max{T2, tmax + δ2}.

Since max{T2, tmax + δ2} > 0, notice this contradicts the definition of tmax. We
conclude the case in which tmax < T2 cannot happen at all.
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We have shown y1(t) ≡ 0 for t0− δ1 < t < T2 where δ1 = min{δ, T2− t0, t0−T1}
and δ is the half length of existence and uniqueness given by application of
Theorem 1 to the IVP

{

y′ = y2

y(t0) = 0.

We can make the same argument to the left to show that in fact y1(t) ≡ 0 for
T1 < t < T2.

The final conclusion here is that if y0 = 0, then the unique solution of the
problem is y ≡ 0.

If y0 6= 0, then by continuity there is some ǫ with ǫ > 0, for which the unique
solution y ∈ C1(t0 − δ, t0 + δ) given by the theorem satisfies y(t) 6= 0 at least
for t0 − ǫ < t < t0 + ǫ. Notice here there is no problem assuming ǫ > 0 is small
enough so that writing

y(t) 6= 0 for t0 − ǫ < t < t0 + ǫ

makes sense. In particular, we can assume ǫ < δ if we like. In any case for
t0 − ǫ < t < t0 + ǫ we can write

y′(t)

[y(t)]2
= 1

and integrate both sides from τ = t0 to t with |t− t0| < ǫ:

∫ t

t0

y′(τ)

[y(τ)]2
dτ = t− t0.

Changing variables in the integral with u = y(τ), we have du = y′(τ) dτ . Thus,

∫ y(t)

y0

1

u2
du = −

1

y(t)
+

1

y0
= t− t0.

This means

y(t) =
1

1/y0 + t0 − t
.

Notice the singularity at 1/y0 + t0 6= t0. The location of this singularity is
somewhat difficult to predict from looking at the original IVP (3).
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Applying this general solution in the special case t0 = 3 and y0 = 7 goes
something like this:

Since y(3) = 7 we know by continuity there is some ǫ > 0 for which y(t) 6= 0 in
some interval 3− ǫ < t < 3 + ǫ. Starting on this interval we can write

y′(t)

[y(t)]2
= 1

and integrate both sides from τ = 3 to t with |t− 3| < ǫ:

∫ t

3

y′(τ)

[y(τ)]2
dτ = t− 3.

Changing variables in the integral with u = y(τ), we have du = y′(τ) dτ . Thus,

∫ y(t)

7

1

u2
du = −

1

y(t)
+

1

7
= t− 3.

This means

y(t) =
1

22/7− t
.

Notice the singularity at 22/7 ≈ π > 3. In particular, the largest possible value
of δ given by the theorem is δmax = 1/7.
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Problem 3 Let F satisfy the conditions of Theorem 1. If T1 < T2 and the IVP
{

y′ = F (y, t), T1 < t < T2

y(t0) = y0
(4)

has a unique solution y ∈ C1(T1, T2) and for every δ > 0 neither of the initial value
problems
{

y′ = F (y, t), T1 − δ < t < T2

y(t0) = y0
or

{

y′ = F (y, t), T1 < t < T2 + δ
y(t0) = y0

has a unique solution, then we say (T1, T2) is a maximal interval for existence
and uniqueness.

(a) According to an application of Theorem 1 to the problem (3) list the quantities
upon which you might expect the maximal interval for existence to depend.
Hint: Your list should be shorter than the list you gave in part (b) of Problem 2.
Which quantities are missing?

(b) Find the maximal interval of existence for the IVP (3).

Solution: Note first that the definition of maximal interval of existence and
uniqueness given above is not quite correct. There is a problem with this definition
when a maximum interval of existence and uniqueness extends to −∞ or +∞. Here1

is how the definition is corrected: Denote the IVP
{

y′ = F (y, t), T1 − δ < t < T2

y(t0) = y0

by (A) and the IVP
{

y′ = F (y, t), T1 < t < T2 + δ
y(t0) = y0

by (B). The definition should require that the IVP (A) does not have a unique solution
whenever δ > 0 and −∞ < T1 < t0 < T2, and the IVP (B) does not have a unique
solution whenever δ > 0 and T1 < t0 < T2 < ∞.

(a) In the application of Theorem 1 to the general IVP (3) in Problem 2 one might ex-
pect dependence in some way on the constants t0 and y0, and of course the struc-
ture function with F (y, t) = y2. Notice that in this application a = c = −∞ and

1I think.
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b = d = +∞, so these are not quantities upon which the value of δ or the maxi-
mum possible value of δ will depend. Put another way, there is no singularity in
the structure function F , so there is no immediately obvious way to see any spe-
cific time where the solution might have a singularity. The structure function,
however, is nonlinear so the point of this problem is to illustrate that nonlin-
earity in the ODE can have potentially somewhat unexpected consequences for
solutions of the problem.

(b) The maximal interval of existence for (3) depends on the value of y0. If y0 = 0,
then the maximal interval of existence is, as shown in detail in the solution of
Problem 2 above, R = (−∞,∞).

If y0 < 0, then the singularity occurs at t0 + 1/y0 < t0, and the maximum
interval of existence is

(T1, T2) = (t0 + 1/y0,+∞).

Notice the argument showing uniqueness of the zero solution in part (c) of the
solution of Problem 2 above may be applied to show the solution given by

y(t) =
1

1/y0 + t0 − t
.

when y0 < 0 also given in the solution of part (c) of Problem 2 above is the
unique solution in this case. Since the left endpoint t0 + 1/y0 gives the points
where the interesting singular behavior

lim
tցt0−1/y0

y(t) = −∞

occurs and the analysis of this behavior requires “arguing to the left” as sug-
gested in the solution of Problem 2 above, here are some of the details:

Consider a solution y1 ∈ C1(T1, T2) of
{

y′ = y2, T1 < t < T2

y(t0) = y0

for some T1 and T2 with T1 < t0 < T2. Application of the existence and
uniqueness theorem tells us

y1(t) ≡
1

1/y0 + t0 − t
for max

{

1

y0
+ t0, T1, t0 − δ

}

< t < min{T2, t0+δ}
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for some δ > 0. Thus, arguing to the left, we set

tmin = min

{

t : y1(t) ≡
1

1/y0 + t0 − t

}

(∗).

If

tmin > max

{

T1,
1

y0
+ t0

}

(∗∗)

then y1(tmin) is a well-defined real number and by continuity we know

y1(tmin) = lim
tցtmin

1

1/y1 + t0 − t
=

1

1/y0 + t0 − tmin
< 0.

We may apply the existence and uniqueness theorem to the IVP
{

y′ = y2

y(tmin) = y1(tmin)

to obtain some δ2 > 0 for which
{

y′ = y2, tmin − δ2 < t < tmin + δ2
y(tmin) = y1(tmin)

has a unique solution y2 ∈ C1(tmin − δ2, tmin + δ2). Accordingly, we know this
unique solution must satisfy

y2(t) ≡
1

1/y0 + t0 − t

for max

{

tmin − δ2, T1,
1

y0
+ t0

}

< t < min {tmin + δ2, T2} .

In particular, we must have also

y1(t) ≡
1

1/y0 + t0 − t

for max

{

tmin − δ2, T1,
1

y0
+ t0

}

< t < min {tmin + δ2, T2} .

Since we know from (**)

max

{

tmin − δ2, T1,
1

y0
+ t0

}

< tmin
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this contradicts the definition of tmin given in (*). Thus we know (**) cannot
hold, and the alternative is

tmin = max

{

T1,
1

y0
+ t0

}

.

If we assume now that

T1 <
1

y0
+ t0,

then

y1

(

1

y0
+ t0

)

should have a well-defined real value. On the other hand, that value must satisfy

y1

(

1

y0
+ t0

)

= lim
tց1/y0+t0

1

1/y0 + t0 − t
= −∞.

This again is a contradiction from which we conclude

T1 ≥
1

y0
+ t0

and

y1(t) ≡
1

1/y0 + t0 − t
for T1 < t < min {tmin + δ2, T2} .

Arguing again to the right it follows also that

y1(t) ≡
1

1/y0 + t0 − t
for T1 < t < T2.

In particular, this shows the IVP

{

y′ = y2, T1 − δ < t < T2

y(t0) = y0

with T1 = 1/y0 + t0 has no solution y ∈ C1(T1 − δ, T2) if δ > 0.

Notice here that the IVP
{

y′ = y2, T1 = 1/y0 + t0 < t < T2 + δ
y(t0) = y0
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does have a unique solution when T2 = +∞ since in that case T2+δ = T2 = +∞.
This is why the original definition required correction.

The final case to consider is when y0 > 0. Then the singularity occurs at
T2 = 1/y0+ t0 > t0, and the maximum interval of existence (and uniqueness) is

(T1, T2) =

(

−∞, t0 +
1

y0

)

.

The inital condition y(3) = 7 of (2) falls into this case with maximal interval of
existence (−∞, 22/7), and the unique solution y ∈ C1(−∞, 22/7) satisfies

y1(t) =
1

22/7− t
.

Problem 4 (existence and uniqueness) Draw a picture illustrating the assertion of
Theorem 1. Include a representation of the intervals (a, b) and (c, d), the point (t0, y0),
and (the role played by) the number δ.
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Recall the sweeping generalization of Theorem 1 which says roughly that any
reasonable ODE always has a unique local solution:

Theorem 2 If

(i) Ω is an open subset of Rn,

(ii) (t0,p) ∈ (a, b)× Ω, and

(iii) F = (F1, F2, . . . , Fn) : Ω× (a, b) → Rn satisfies F ∈ C0(Ω× (a, b) → Rn) and

∂Fi

∂yj
∈ C0(Ω× (a, b)) for i, j = 1, 2, . . . , n,

then there is some δ > 0 for which the initial value problem (IVP)

{

y′ = F (y, t), t0 − δ < t < t0 + δ
y(t0) = p,

(5)

has a unique solution y = (y1, y2, . . . , yn) : (t0 − δ, t0 + δ) → Rn satisfying2 yj ∈
C1(t0 − δ, t0 + δ) for j = 1, 2, . . . , n.

Problem 5 What does Theorem 2 tell you about the second order IVP

u′′

(1 + u′2)3/2
= u, u(x0) = u0, u′(x0) = u′

0

where x0, u0, u
′
0 ∈ R? Hint: Set y1 = u and y2 = u′.

Solution: In order to apply Theorem 2 to the second order ODE here, we consider an
equivalent system:

{

y′1 = y2, y1(x0) = u0

y′2 = y1(1 + y22)
3/2, y2(x0) = u′

0.

Writing this system in vector notation with y = (y1, y2)
T we have

{

y′ = F(y)
y(x0) = (u0, u

′
0)

T

2We denote this regularity conclusion also by writing simply y ∈ C1((t0 − δ, t0 + δ) → R
n).
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where F : R2 → R2 by

F(y1, y2) =

(

y2
y1(1 + y22)

3/2

)

.

Note that F ∈ C∞(R2 → R2). The existence and uniqueness theorem stated as
Theorem 2 above asserts that there exists some δ > 0 for which the equivalent system
has a unique solution y ∈ C1((x0 − δ, x0 + δ) → R

2).
Setting u(t) = y1(t), we know u′(t) = y′1(t) = y2(t). Since y2 ∈ C1(x0 − δ, x0 + δ),

we know u ∈ C2(x0 − δ, x0 + δ). Also,

u′′ = y′2 = y1(1 + y22)
3/2 = u(1 + u′2)3/2.

That is,
u′′

(1 + u′2)3/2
= u.

Finally, u(x0) = y1(x0) = u0 and u′(x0) = y2(x0) = u′
0. One conclusion is this:

For every triple of real numbers x0, u0 and u′
0, there exists some δ > 0 for which

the second order IVP

u′′

(1 + u′2)3/2
= u, u(x0) = u0, u′(x0) = u′

0

has a solution u ∈ C2(x0 − δ, x0 + δ).
On the other hand, if u ∈ C2(x0−δ, x0+δ) is any solution of the second order IVP,

then setting y1 = u and y2 = u′ gives a solution y = (y1, y2)
T ∈ C1((x0− δ, x0 + δ) →

R2) of the equivalent system satisfying the associated IVP

{

y′ = F(y)
y(x0) = (u0, u

′
0)

T .

Since the first order system has a unique solution y ∈ C1((x0 − δ, x0 + δ) → R2) we
know also that u ≡ y1 is uniquely determined by the unique first component function.
Thus, we can make the more comprehensive conclusion:

For every triple of real numbers x0, u0 and u′
0, there exists some δ > 0 for which

the second order IVP

u′′

(1 + u′2)3/2
= u, u(x0) = u0, u′(x0) = u′

0

has a unique solution u ∈ C2(x0 − δ, x0 + δ).
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Problem 6 Consider the autonomous system of first order ordinary differential equa-
tions

x′ = x⊥ (6)

where x = (x1, x2) and x⊥ = (−x2, x1) and the initial value problem

{

x′ = x⊥, t ∈ R

x(0) = (1, 0).
(7)

(a) Find the general solution of (6).

(b) Plot the image {(x1(t), x2(t)) : 0 ≤ t ≤ 3π/2} of the solution of (7).

(c) Plot the graph {(t, x1(t), x2(t)) : t ∈ R} of the solution of (7).
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Recall the following existence and uniqueness theorem for ODEs:

Theorem 3 (existence and uniqueness for linear ODEs) If A = (aij) : (a, b) → Rn×n

is a matrix valued function satisfying aij ∈ C0(a, b) for i, j = 1, 2, . . . , n and b =
(b1, b2, . . . , bn) : (a, b) → Rn is a vector valued function satisfying bj ∈ C0(a, b) for
j − 1, 2, . . . , n, then for each (t0,p) ∈ (a, b)× Rn the IVP

{

y′ = Ay + b, t ∈ (a, b)
y(t0) = p

has a unique solution y ∈ C1((a, b) → Rn).

Problem 7 (linear ODEs)

(a) In what ways is Theorem 3 “weaker” than Theorem 2?

(b) In what ways is Theorem 3 “stronger” than Theorem 2?

Solution:

(a) The requirements of Theorem 3 on the structure of the equation are much more
restrictive than those of Theorem 2 which makes the theorem “weaker.” Specif-
ically Theorem 3 only applies to systems y′ = F(y, t) for which the structure
function F has the very special form

F(y, t) = Ay + b

with the coefficients aij and bj all continous. In particular, F ∈ C0(Rn×(a, b) →
Rn) and

∂Fi

∂yj
=

∂

∂yj

(

n
∑

k=1

aikyk

)

= aij ∈ C0(a, b).

In particular ∂Fi/∂yj is independent of y and

∂Fi

∂yj
∈ C0(Rn × (a, b)).

What we have shown here is that all the hypotheses of Theorem 2 are required
(and rather much more) by the hypotheses of Theorem 3. In this sense, Theo-
rem 3 is much weaker than Theorem 2.
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(b) In contrast, the conclusion of Theorem 3 is much stronger than the conclusion
of Theorem 2. Notice one obtains global existence and uniqueness valid for
the entire interval of regularity (a, b) rather than merely a local subinterval
(t0− δ, t0 + δ) for some δ > 0. In this way, if you happen to have a linear ODE,
Theorem 3 is much stronger than Theorem 2 in the sense that Theorem 2 gives
a much stronger conclusion.
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Problem 8 (linear ODEs) Consider the linear homogeneous IVP

y′ =

(

0 1
−1 0

)

y, y(0) = 0 ∈ R
2.

(a) What is the maximal interval of existence for this IVP?

(b) Solve this IVP.

Solution:

(a) The coefficent functions are all constant valued functions, so one has existence
(and uniqueness) for all t ∈ R giving a maximal interval of existence and unique-
ness of

(T1, T2) = R = (−∞,∞)

irrespective of initial condition(s).

(b) The constant solution with y1(t) ≡ 0 and y2(t) ≡ 0 or y(t) ≡ 0 ∈ R2 clearly
solves the problem, so this is the unique solution given by Theorem 3.
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There is no sweeping theory of existence and uniqueness for partial differential
equations (PDE). Most people are introduced to the subject through consideration
of particular examples of PDEs. At least this is a way to get some idea of what can
happen if one starts to think about partial differential equations. Very often the first
PDE a person considers is Laplace’s equation

∆u =
n
∑

j=1

∂2u

∂x2
j

= 0.

Given an open set Ω ⊂ R
n, a natural set of functions on which to consider the Laplace

operator ∆ and this PDE is C2(Ω). Then we can write

∆ : C2(Ω) → C0(Ω)

and the Laplacian ∆ is linear. This is not a bad choice of a place to start.
One source for a rich family of solutions of ∆u = 0 when Ω ⊂ R2 is the collection

of complex differentiable functions. See Problem 7 of Assignment 2.

Problem 9 Consider f : C → C by f(z) = z2.

(a) Write z = x+iy and find the real and imaginary parts u, v ∈ C∞(R2) of f = u+iv.

(b) Compute ∆u and ∆v.

Solution:

(a) (x+ iy)2 = x2 − y2 + 2xyi.

u(x, y) = x2 − y2 and v(x, y) = 2xy.

(b)
∂2u

∂x2
+

∂2u

∂y2
= 2− 2 = 0 and

∂2v

∂x2
+

∂2u

∂y2
= 0− 0 = 0.

Notice of course that these are harmonic conjugates, so the Cauchy-Riemann
equations

∂u

∂x
= 2x =

∂v

∂y
and

∂u

∂y
= −2y = −

∂v

∂x

are somewhat less trivial.
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Problem 10 (hanging slinky) Interpret your relation from part (b) of Problem 1
above involving the stretch function σ and the linear density function ρ as an ordinary
differential equation with two unknown functions σ and ρ.

(a) What else would you need in order to apply an existence and uniqueness theorem
for ODEs to potentially determine the stretch σ and the linear mass density ρ?

(b) What natural restriction or constraint should apply to the derivative σ′ of the
stretch function and why?

(c) With a view to applying an existence and uniqueness theorem for ODEs to some
ODEs for ρ and σ, what can you say about the potential boundary and/or
initial values.
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