
Assignment 3 = Exam 1:
Ordinary Differential Equations (and other topics)

Due Wednesday, February 8, 2023

John McCuan

January 16, 2023

Problem 1 Consider the autonomous system of first order ordinary differential equa-
tions

x′ = x⊥ (1)

where x = (x1, x2) and x⊥ = (−x2, x1) and the initial value problem

{

x′ = x⊥, t ∈ R

x(0) = (1, 0).
(2)

(a) Find the general solution of (1).

(b) Plot the image {(x1(t), x2(t)) : 0 ≤ t ≤ 3π/2} of the solution of (2).

(c) Plot the graph {(t, x1(t), x2(t)) : t ∈ R} of the solution of (2).

Problem 2 Find a single (second order) ordinary differential equation equivalent to
the system (1) in Problem 1 above by setting y = x1.
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Problem 3 Consider the nonautonomous system of first order ODEs























x′
1 = −x2 sec

2 t

x′
2 = x1 sec

2 t

u′ = sec2 t

(3)

and the initial value problem























x′
1 = −x2 sec

2 t, x1(0) = 1

x′
2 = x1 sec

2 t, x2(0) = 0

u′ = sec2 t, u(0) = 0.

(4)

(a) Find the general solution of (3) on the interval |t| < π/2.

(b) Plot the image {(x1(t), x2(t), u(t)) : −π/2 < t ≤ π/2} of the solution of (4).

(c) Plot the projection {(x1(t), x2(t)) : 0 ≤ t ≤ tan−1(3π/2)} of the image of the
solution of (4).

2



Any time the integral of a function f : R → R makes sense, let us write
∫

R

f (5)

for the value of the integral of f on all of R. This is a little more general that what
you have probably seen before, but it includes some cases you know. For example,
(you know that) if f ∈ C0(R) and

lim
R→∞

∫ R

−R

f(t) dt = I ∈ R,

then
∫ ∞

−∞

f(t) dt = I =

∫

R

f.

Problem 4 (test functions) Let C0
c (R) denote the subspace of C

0(R) of continuous
functions with compact support, that is,

C0
c (R) = {φ ∈ C0(R) : there exists some R > 0 with φ(x) = 0 for |x| ≥ R}.

Note that
∫

R

φ

makes sense for every φ ∈ C0
c (R) and

∫

R

uφ

makes sense for every u ∈ C0(R) and φ ∈ C0
c (R).

Let C1
c (R) denote the subspace of C1(R) of continuously differentiable func-

tions with compact support, that is,

C1
c (R) = {φ ∈ C1(R) : there exists some R > 0 with φ(x) = 0 for |x| ≥ R}.

(a) (characteristic function) Given a set A ⊂ R, consider χA : R → R by

χA(x) =

{

1, x ∈ A
0, x /∈ A.

Draw the graph of φ : R → R by φ(x) = [g(x) − R]χ(−R,R)(x) where g is the
absolute value function and compute

∫

R

φ.
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(b) Given x0 ∈ R and r > 0, construct a function φ ∈ C1
c (R) having the following

properties

(i) φ ≥ 0.

(ii) φ(x) > 0 if and only if |x− x0| < r.

(iii) φ(x0 − t) = φ(x0 + t) for t ∈ R.

(c) Show that if f ∈ C0(R) and

∫

R

fφ = 0 for every φ ∈ C1
c (R),

then f(x) = 0 for every x ∈ R.

We can call this the fundamental lemma of test functions.1

Problem 5 (weak derivatives) We say v : R → R is a weak derivative of u : R → R

if

−
∫

R

uφ′ =

∫

R

vφ for all φ ∈ C1
c (R), (6)

(and all the integrals in (6) make sense).

(a) Find a weak derivative g′ : R → R for the absolute value function g : R → R

with the following properties.

(L) The restriction
g′∣
∣

(−∞,0)

of g′ to the open interval (−∞, 0) is in C0(−∞, 0).

(R) The restriction
g′∣
∣

(0,∞)

of g′ to the open interval (0,−∞) is in C0(0,+∞).

(b) Show that if v is any weak derivative of the absolute value function g and

v∣
∣

R\{0}

∈ C0(R\{0}),

1In some form, it is also called the fundamental lemma of the calculus of variations.
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then
v∣
∣

R\{0}

= g′∣
∣

R\{0}

where g′ is the function you found in part (a) above.

(c) Find 106 other functions that are weak derivatives of the absolute value function
g (which are all different from the function g′ you found and different from each
other).

Problem 6 Let h : R → R denote the Heaviside function

h(x) =

{

0, −∞ < x < 0
1, 0 ≤ x < ∞

as in Assignment 1 Problem 7.

(a) Compute −
∫

R
hφ′ for φ ∈ C1

c (R). Hint: Use the fundamental theorem of calculus.

(b) Show that h does not have any weak derivative v satisfying

v∣
∣

R\{0}

∈ C0(R\{0}).

Hint: Use the technique you used in part (b) of Problem 5 above.
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Note: Sometimes we wish to extend and modify the notation in (5) in various ways.
One extension is to allow more general domains of integration. If A ⊂ R and

∫

R

fχA

makes sense, then we can write

∫

A

f =

∫

R

fχA. (7)

It is sometimes useful to modify the notation(s) (5) and (7) for integrals so that
a variable of integration is specified (or emphasized) much in the same way the
variable of integration is specified in Leibniz’ notation for the integration of continuous
functions

∫ b

a

f(t) dt.

This may be done by writing the variable of integration in the “limit of integration”
as follows:

∫

t∈A

f =

∫

t∈A

f(t).

Notice that in the notational variant on the right, the name of the function may not
appear:

∫

t∈(0,∞)

(

χ(0,1)(t)√
t

+
χ(1,∞)(t)

t2

)

=

∫ 1

0

1√
t
dt+

∫ ∞

1

1

t2
dt = 3.

Problem 7 (weak solutions) Consider the (single, nonautonomous) ordinary differ-
ential equation x′ = f(x, t) for x ∈ C1(R) where f ∈ C2(R2) is given.

Here is a definition:

Definition 1 (weak solution of a single ODE) A function u ∈ C0(R) is a continuous
weak solution of the ordinary differential equation x′ = f(x, t) if

−
∫

R

uφ′ =

∫

t∈R

f(u(t), t)φ(t) for every φ ∈ C1
c (R).

(a) You (should) know what f ∈ C0(R2) means, and you (should) know what f ∈
C1(R2) means. Can you guess (or find out) what f ∈ C2(R2) means?
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(b) Find a weak solution of the ordinary differential equation

dy

dt
= 2h(t)− 1 (8)

where h is the Heaviside function.

(c) Find all continuous weak solutions of the ordinary2 differential equation (8).

(d) Show that if u is a continuous weak solution of x′ = f(t), then every (other)
continuous weak solution w of x′ = f(t) satisfies w(x) = u(x) + c for some
constant c ∈ R. (Hint: Show every continuous weak solution of x′ = 0 is
constant.)

2Or maybe not so ordinary.
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Problem 8 (vector space; linear algebra) In Problem 4 above I mentioned that the
spaces C0

c (R) and C1
c (R) of test functions were subspaces of C0(R) and C1(R)

respectively. I had in mind the following definitions from linear algebra:

Definition 2 (vector space) A set V is a real vector space if there is an operation
of addition + : V × V → V by (v, w) 7→ v + w, i.e., a way to add two vectors in V
to get back a (sum) vector v + w in V , satisfying

VS1 v+w = w+ v and (v+w)+ z = v+ (w+ z), i.e., addition is commutative and
associative.

VS2 There is some vector 0 ∈ V , called the zero vector for which

v + 0 = v for every v ∈ V .

The zero vector is also called the additive identity.

VS3 For every v ∈ V there is a vector w ∈ V such that

v + w = 0.

In this case, the vector w is called the additive inverse of v and is denoted by
−v.

In addition to addition, there is scaling R× V → V by (a, v) 7→ av which satisfies

VS4 (ab)v = a(bv) for all a, b ∈ R and v ∈ V .

VS5 1v = v for all v ∈ V .

VS6 a(v + w) = av + aw. (Scaling distributes across vector addition.)

VS7 (a+ b)v = av + bv. (A scaled vector distributes across a sum of scalars.)

Definition 3 Given a vector space V , a subset W ⊂ V is said to be a subspace
of V is W is a vector space with respect to the same operations and with the same
additive identity.

Definition 4 Given two real vector spaces V and W , a function L : V → W is said
to be linear if

L(av + bw) = aL(v) + bL(w) for all a, b ∈ R and v, w ∈ V .
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(a) Show C0(R) is a vector space.

(b) Show that given any vector space V the subset W ⊂ V is a subspace if and only
if W satisfies the following property:

For any a, b ∈ R and v, w ∈ W there holds av + bw ∈ W .

In this case, W is said to be closed under scaling and addition, or simply
closed under linear combinations.

(c) Show C1
c (R) is a subspace of C0(R).

(d) Given f ∈ C0(R), show P : C1
c (R) → R by

P (φ) = −
∫

R

fφ′

is linear. This linear function P is called the weak differentiation operator.

(e) Show D : C1(R) → C0(R) by

Du =
du

dx

is linear. This linear function D is called the classical differentiation oper-
ator.

9



Problem 9 A function f ∈ C∞(R), i.e., a function with derivatives f (j) existing for
every j = 0, 1, 2, . . ., is said to be real analytic or Cω (read “f is C-omega”) if for
each x, x0 ∈ R the series

∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j (9)

converges to a real number and that real number satisfies

f(x) =

∞
∑

j=0

f (j)(x0)

j!
(x− x0)

j .

(a) Show the exponential function exp(x) = ex is in Cω(R).

(b) Find a function u ∈ C∞(R)\Cω(R).

Problem 10 There is a series construction/expansion similar to the one you know
from Problem 9 above which applies to functions of several variables. Given an open
set U ⊂ R

n and a function u ∈ C∞(U), meaning that all partial derivatives of all
orders are well-defined, the multidimensional Taylor series associated with u at
x0 ∈ U is defined to be

∞
∑

j=1

∑

|β|=j

Dβu(x0)

β!
(x− x0)

β. (10)

You (most likely) do not understand (many things about) this expression. Please
proceed anyway.

(a) In the expansion formula (10) the symbol β = (β1, β2, . . . , βn) denotes a multi-
index. This means βj ∈ N0 = {0, 1, 2, 3, . . .} for each j = 1, 2, . . . , n. The
“magnitude” of the multi-index β is defined by

|β| =
n

∑

j=1

βj .

Find all the multiindices with |β| = 2 when n = 3.

(b) The multi-index partial derivatives appearing in (10) are given in the usual
notation by

Dβu =
∂|β|u

∂xβ1

1 ∂xβ2

2 · · ·∂xβn

n

.
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Perhaps you can see why the multi-index partial derivative notation is preferable
when one is dealing with high order partial derviatives. For example, given
u = u(x, y, z) we can write

D(2,0,0)u =
∂2

∂x2
.

Write down all the second partials of a function u when n = 3 in both forms as
I have done.

(c) The factorial and the power appearing in (10) are defined as follows:

β! = β1!β2! · · ·βn! and xβ = xβ1
1 xβ2

2 · · ·xβn

n .

On page 192 Boas gives the second order terms of the power series expansion
for a function of two variables:

1

2!

[

fxx(x0, y0)(x− x0)
2 + 2fxy(x0, y0)(x− x0)(y − y0) + fyy(x0, y0)(y − y0)

2
]

.

Isolate the second order terms in (10) when n = 2, and show the second order
terms form (10) are the same as Boas’ second order terms.

(d) (Boas Problem 4.2.5) Find the Taylor expansion of u(x, y) =
√
1 + xy at (x0, y0) =

(0, 0) using Boas’ formula

u(x, y) =

∞
∑

n=0

1

n!

(

(x− x0)
∂

∂x
+ (y − y0)

∂

∂y

)n

f∣
∣

(x0,y0)

and using formula (10).
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