Assignment 3 = Exam 1:
Ordinary Differential Equations (and other topics)
Due Wednesday, February 8, 2023

John McCuan
January 16, 2023

Problem 1 Consider the autonomous system of first order ordinary differential equa-
tions
x = x* (1)

where x = (71, z3) and x* = (—x9, ;) and the initial value problem

x =xt, teR
{ %(0) = (1,0). (2)

(a) Find the general solution of (1).
(b) Plot the image {(x(t),22(t)) : 0 <t < 37w/2} of the solution of (2).
(c) Plot the graph {(t,z1(t), za(t)) : t € R} of the solution of (2).

Problem 2 Find a single (second order) ordinary differential equation equivalent to
the system (1) in Problem 1 above by setting y = z;.



Problem 3 Consider the nonautonomous system of first order ODEs
xh = —xysec?t

Th = xy sec? t

u' = sec?t
and the initial value problem
Ty = —xzysec’t, x1(0) =1
rh = mxysec?t,  w2(0) =0
u' = sec’t, u(0) = 0.

(a) Find the general solution of (3) on the interval |t| < /2.

(b) Plot the image {(z1(t), z2(t),u(t)) : —m/2 < t < 7/2} of the solution of (4).

(c) Plot the projection {(zy(t),z2(t)) : 0 < t < tan™'(37/2)} of the image of the

solution of (4).



Any time the integral of a function f : R — R makes sense, let us write

/R / (5)

for the value of the integral of f on all of R. This is a little more general that what
you have probably seen before, but it includes some cases you know. For example,
(you know that) if f € C°(R) and

R
mn/ Ft)dt =1€R,
—-R

R—o0

[Zﬂ@ﬁ:]:éf

Problem 4 (test functions) Let C?(R) denote the subspace of C°(R) of continuous
functions with compact support, that is,

COR) = {¢ € C°(R) : there exists some R > 0 with ¢(x) = 0 for |x| > R}.

/
R

e

makes sense for every u € C°(R) and ¢ € C2(R).
Let C}(R) denote the subspace of C'(R) of continuously differentiable func-
tions with compact support, that is,

CHR) = {¢ € C*(R) : there exists some R > 0 with ¢(x) = 0 for |x| > R}.

then

makes sense for every ¢ € C?(R) and

(a) (characteristic function) Given a set A C R, consider x4 : R — R by

1, x€ A
Xa(@) = 0, =z ¢A.

Draw the graph of ¢ : R = R by ¢(x) = [g(x) — R]X(~r,r)(z) where g is the
absolute value function and compute

Jeo
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(b) Given x5 € R and r > 0, construct a function ¢ € C!(R) having the following
properties
(i) ¢ >0.
(ii) ¢(x) > 0 if and only if |z — zo| < 7.
(iii) ¢(zo —1t) = Pp(xo +t) for t € R.

(c) Show that if f € C°(R) and

/ fo=0 for every ¢ € C}(R),
R

then f(z) =0 for every z € R.

We can call this the fundamental lemma of test functions.!

Problem 5 (weak derivatives) We say v : R — R is a weak derivative of u: R — R
if
/u¢ /vgb for all ¢ € C}(R), (6)

(and all the integrals in (6) make sense).

(a) Find a weak derivative ¢’ : R — R for the absolute value function g : R — R
with the following properties.

(L) The restriction
g’}
(—00,0)
of ¢’ to the open interval (—o0,0) is in CY(—o0, 0).
(R) The restriction
9"
(0,00)

of ¢’ to the open interval (0, —o00) is in C°(0, +00).
(b) Show that if v is any weak derivative of the absolute value function g and

v o€ C(R\{0}),

R\{0}

'In some form, it is also called the fundamental lemma of the calculus of variations.



then

o
ooy

R\{0} R\{0}

where ¢’ is the function you found in part (a) above.

(c) Find 10° other functions that are weak derivatives of the absolute value function
g (which are all different from the function ¢’ you found and different from each
other).

Problem 6 Let h: R — R denote the Heaviside function

0, —co<z<0
h(a:):{ 1, 0<zr <0

as in Assignment 1 Problem 7.
(a) Compute — [, h¢' for ¢ € C}(R). Hint: Use the fundamental theorem of calculus.

(b) Show that h does not have any weak derivative v satisfying

v € COR\{0D).
‘R\{O}

Hint: Use the technique you used in part (b) of Problem 5 above.



Note: Sometimes we wish to extend and modify the notation in (5) in various ways.
One extension is to allow more general domains of integration. If A C R and

/RfXA
/Afz/foA. (7)

It is sometimes useful to modify the notation(s) (5) and (7) for integrals so that
a variable of integration is specified (or emphasized) much in the same way the
variable of integration is specified in Leibniz’ notation for the integration of continuous

functions ,
/ f(t)dt.

This may be done by writing the variable of integration in the “limit of integration”

as follows:
/teA = /teA f8)

Notice that in the notational variant on the right, the name of the function may not

appear:
X(0,1)(t) X(l,oo)(t)) /1 1 /°° 1

+ = | —zdt+ | Sdt=3.
/te(o,oo) ( Vit t2 o Vi Nz

Problem 7 (weak solutions) Consider the (single, nonautonomous) ordinary differ-
ential equation 2’ = f(xz,t) for x € C'(R) where f € C*(R?) is given.
Here is a definition:

makes sense, then we can write

Definition 1 (weak solution of a single ODE) A function v € C°(R) is a continuous
weak solution of the ordinary differential equation x' = f(x,t) if

- /Ruqb' - /t F®.0)6(t)  for every ¢ € C(R).

(a) You (should) know what f € C°(R?) means, and you (should) know what f €
C'(R?) means. Can you guess (or find out) what f € C*(R?) means?



(b) Find a weak solution of the ordinary differential equation

dy
=20 -1 (8)

where h is the Heaviside function.
(c) Find all continuous weak solutions of the ordinary? differential equation (8).

(d) Show that if u is a continuous weak solution of ' = f(t), then every (other)
continuous weak solution w of 2’ = f(t) satisfies w(z) = u(x) + ¢ for some
constant ¢ € R. (Hint: Show every continuous weak solution of ' = 0 is
constant.)

20r maybe not so ordinary.



Problem 8 (vector space; linear algebra) In Problem 4 above I mentioned that the
spaces C(R) and C!(R) of test functions were subspaces of C°(R) and C'(R)
respectively. I had in mind the following definitions from linear algebra:

Definition 2 (vector space) A set V' is a real vector space if there is an operation
of addition + : V x V =V by (v,w) — v+ w, i.e., a way to add two vectors in V.
to get back a (sum) vector v+ w in 'V, satisfying

VS1 v+w=w+wv and (v+w)+z=v+ (w+2), i.e., addition is commutative and
associative.

VS2 There is some vector 0 € V', called the zero vector for which
v+0=v for everyv € V.
The zero vector is also called the additive identity.

VS3 For everyv € V there is a vector w € V' such that
v+w=0.

In this case, the vector w is called the additive inverse of v and is denoted by
—v.

In addition to addition, there is scaling R x V' — V by (a,v) — av which satisfies
VS4 (ab)v = a(bv) for all a,b € R andv € V.

VS5 lv=wv forallveV.

VS6 a(v+w)=av+ aw. (Scaling distributes across vector addition.)

VS7 (a+b)v =av+bv. (A scaled vector distributes across a sum of scalars.)

Definition 3 Given a vector space V', a subset W C V s said to be a subspace
of V is W is a vector space with respect to the same operations and with the same
additive identity.

Definition 4 Given two real vector spaces V- and W, a function L -V — W 1is said
to be linear if

L(av + bw) = aL(v) + bL(w) for all a,b € R and v,w € V.



(a) Show C°(R) is a vector space.

(b) Show that given any vector space V' the subset W C V is a subspace if and only
if W satisfies the following property:

For any a,b € R and v,w € W there holds av + bw € W.

In this case, W is said to be closed under scaling and addition, or simply
closed under linear combinations.

(c) Show C!(R) is a subspace of C(R).
(d) Given f € C°R), show P : C}(R) — R by

P(g) = — /R %

is linear. This linear function P is called the weak differentiation operator.

(e) Show D : C'(R) — C°(R) by

du
Du=—
dx
is linear. This linear function D is called the classical differentiation oper-

ator.



Problem 9 A function f € C*®°(R), i.e., a function with derivatives fU) existing for
every j = 0,1,2,..., is said to be real analytic or C* (read “f is C-omega”) if for
each z,zy € R the series

< £0) (g |
pPEACLLIPER )

J!

converges to a real number and that real number satisfies

< £0) (g, |
fo) =Y T 0y,

J

(a) Show the exponential function exp(z) = e” is in C¥(R).
(b) Find a function u € C*(R)\C¥(R).

Problem 10 There is a series construction/expansion similar to the one you know
from Problem 9 above which applies to functions of several variables. Given an open
set U C R"™ and a function u € C*(U), meaning that all partial derivatives of all
orders are well-defined, the multidimensional Taylor series associated with u at
Xo € U is defined to be

S>> P x)” (10)
=1 8l=j '
You (most likely) do not understand (many things about) this expression. Please
proceed anyway.

(a) In the expansion formula (10) the symbol g = (81, 52, .. ., fn) denotes a multi-
index. This means 5; € Ny = {0,1,2,3,...} for each j = 1,2,...,n. The
“magnitude” of the multi-index 3 is defined by

18] =8
j=1

Find all the multiindices with || = 2 when n = 3.

(b) The multi-index partial derivatives appearing in (10) are given in the usual

notation by
5 98l

u= :
Or x -. Oz

10



Perhaps you can see why the multi-index partial derivative notation is preferable
when one is dealing with high order partial derviatives. For example, given
u=u(x,y, z) we can write

82
Do, — 9
YT o
Write down all the second partials of a function v when n = 3 in both forms as
I have done.

(c) The factorial and the power appearing in (10) are defined as follows:
Bl= BB B, and  xP=alal . b
On page 192 Boas gives the second order terms of the power series expansion

for a function of two variables:

1

21 [f:c:c(zoa yO)(z - 1’0)2 + 2f:cy(x0> yO)(x - Io)(y - yO) + fyy($0> yO)(y - y0)2} .

Isolate the second order terms in (10) when n = 2, and show the second order
terms form (10) are the same as Boas’ second order terms.

(d) (Boas Problem 4.2.5) Find the Taylor expansion of u(z,y) = /1 + zy at (xo, y0) =
(0,0) using Boas’ formula

e =3 2 (- a) g+ - mig )

n=0

(z0-Y0)

and using formula (10).
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