Assignment $3 = Exam 1$: Ordinary Differential Equations (and other topics) Due Wednesday, February 8, 2023

John McCuan

January 16, 2023

Problem 1 Consider the autonomous system of first order ordinary differential equations

$$
\mathbf{x}' = \mathbf{x}^\perp \tag{1}
$$

where $\mathbf{x} = (x_1, x_2)$ and $\mathbf{x}^{\perp} = (-x_2, x_1)$ and the initial value problem

$$
\begin{cases} \mathbf{x}' = \mathbf{x}^{\perp}, & t \in \mathbb{R} \\ \mathbf{x}(0) = (1, 0). \end{cases}
$$
 (2)

- (a) Find the general solution of (1).
- (b) Plot the image $\{(x_1(t), x_2(t)) : 0 \le t \le 3\pi/2\}$ of the solution of (2).
- (c) Plot the graph $\{(t, x_1(t), x_2(t)) : t \in \mathbb{R}\}\)$ of the solution of (2).

Problem 2 Find a single (second order) ordinary differential equation equivalent to the system (1) in Problem 1 above by setting $y = x_1$.

Problem 3 Consider the nonautonomous system of first order ODEs

$$
\begin{cases}\nx'_1 = -x_2 \sec^2 t \\
x'_2 = x_1 \sec^2 t \\
u' = \sec^2 t\n\end{cases}
$$
\n(3)

and the initial value problem

$$
\begin{cases}\nx'_1 = -x_2 \sec^2 t, & x_1(0) = 1 \\
x'_2 = x_1 \sec^2 t, & x_2(0) = 0 \\
u' = \sec^2 t, & u(0) = 0.\n\end{cases}
$$
\n(4)

- (a) Find the general solution of (3) on the interval $|t| < \pi/2$.
- (b) Plot the image $\{(x_1(t), x_2(t), u(t)) : -\pi/2 < t \le \pi/2\}$ of the solution of (4).
- (c) Plot the projection $\{(x_1(t), x_2(t)) : 0 \le t \le \tan^{-1}(3\pi/2)\}\)$ of the image of the solution of (4).

Any time the integral of a function $f : \mathbb{R} \to \mathbb{R}$ makes sense, let us write

$$
\int_{\mathbb{R}} f \tag{5}
$$

for the value of the integral of f on all of $\mathbb R$. This is a little more general that what you have probably seen before, but it includes some cases you know. For example, (you know that) if $f \in C^0(\mathbb{R})$ and

$$
\lim_{R \to \infty} \int_{-R}^{R} f(t) dt = I \in \mathbb{R},
$$

then

$$
\int_{-\infty}^{\infty} f(t) dt = I = \int_{\mathbb{R}} f.
$$

Problem 4 (test functions) Let $C_c^0(\mathbb{R})$ denote the subspace of $C^0(\mathbb{R})$ of **continuous** functions with compact support, that is,

 $C_c^0(\mathbb{R}) = \{ \phi \in C^0(\mathbb{R}) : \text{there exists some } R > 0 \text{ with } \phi(x) = 0 \text{ for } |x| \ge R \}.$

Note that

$$
\int_{\mathbb{R}}\phi
$$

makes sense for every $\phi \in C_c^0(\mathbb{R})$ and

$$
\int_{\mathbb{R}} u \phi
$$

makes sense for every $u \in C^0(\mathbb{R})$ and $\phi \in C^0_c(\mathbb{R})$.

Let $C_c^1(\mathbb{R})$ denote the subspace of $C^1(\mathbb{R})$ of **continuously differentiable func**tions with compact support, that is,

 $C_c^1(\mathbb{R}) = \{ \phi \in C^1(\mathbb{R}) : \text{there exists some } R > 0 \text{ with } \phi(x) = 0 \text{ for } |x| \ge R \}.$

(a) (characteristic function) Given a set $A \subset \mathbb{R}$, consider $\chi_A : \mathbb{R} \to \mathbb{R}$ by

$$
\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A. \end{cases}
$$

Draw the graph of $\phi : \mathbb{R} \to \mathbb{R}$ by $\phi(x) = [g(x) - R] \chi_{(-R,R)}(x)$ where g is the absolute value function and compute

$$
\int_{\mathbb{R}} \phi.
$$

- (b) Given $x_0 \in \mathbb{R}$ and $r > 0$, construct a function $\phi \in C_c^1(\mathbb{R})$ having the following properties
	- (i) $\phi \geq 0$.
	- (ii) $\phi(x) > 0$ if and only if $|x x_0| < r$.
	- (iii) $\phi(x_0 t) = \phi(x_0 + t)$ for $t \in \mathbb{R}$.
- (c) Show that if $f \in C^0(\mathbb{R})$ and

$$
\int_{\mathbb{R}} f \phi = 0 \quad \text{for every } \phi \in C_c^1(\mathbb{R}),
$$

then $f(x) = 0$ for every $x \in \mathbb{R}$.

We can call this the fundamental lemma of test functions.¹

Problem 5 (weak derivatives) We say $v : \mathbb{R} \to \mathbb{R}$ is a **weak derivative** of $u : \mathbb{R} \to \mathbb{R}$ if

$$
-\int_{\mathbb{R}} u\phi' = \int_{\mathbb{R}} v\phi \qquad \text{for all } \phi \in C_c^1(\mathbb{R}),
$$
 (6)

(and all the integrals in (6) make sense).

- (a) Find a weak derivative $g' : \mathbb{R} \to \mathbb{R}$ for the absolute value function $g : \mathbb{R} \to \mathbb{R}$ with the following properties.
	- (L) The restriction

 $g'\Big|_{(-\infty,0)}$

of g' to the open interval $(-\infty, 0)$ is in $C^0(-\infty, 0)$.

(R) The restriction

$$
g'\Big|_{(0,\infty)}
$$

of g' to the open interval $(0, -\infty)$ is in $C^0(0, +\infty)$.

(b) Show that if v is any weak derivative of the absolute value function g and

$$
v_{\vert_{\mathbb{R}\setminus\{0\}}} \in C^0(\mathbb{R}\setminus\{0\}),
$$

 1 In some form, it is also called the **fundamental lemma of the calculus of variations**.

then

$$
v_{\big|_{\mathbb{R}\backslash\{0\}}} = g'_{\big|_{\mathbb{R}\backslash\{0\}}}
$$

where g' is the function you found in part (a) above.

(c) Find 10⁶ other functions that are weak derivatives of the absolute value function g (which are all different from the function g' you found and different from each other).

Problem 6 Let $h : \mathbb{R} \to \mathbb{R}$ denote the Heaviside function

$$
h(x) = \begin{cases} 0, & -\infty < x < 0 \\ 1, & 0 \le x < \infty \end{cases}
$$

as in Assignment 1 Problem 7.

- (a) Compute $-\int_{\mathbb{R}} h\phi'$ for $\phi \in C_c^1(\mathbb{R})$. Hint: Use the fundamental theorem of calculus.
- (b) Show that h does not have any weak derivative v satisfying

$$
v_{\big|_{\mathbb{R}\setminus\{0\}}}\in C^0(\mathbb{R}\setminus\{0\}).
$$

Hint: Use the technique you used in part (b) of Problem 5 above.

Note: Sometimes we wish to extend and modify the notation in (5) in various ways. One extension is to allow more general domains of integration. If $A \subset \mathbb{R}$ and

$$
\int_{\mathbb{R}} f \chi_A
$$

makes sense, then we can write

$$
\int_{A} f = \int_{\mathbb{R}} f \chi_{A}.\tag{7}
$$

It is sometimes useful to modify the notation(s) (5) and (7) for integrals so that a variable of integration is specified (or emphasized) much in the same way the variable of integration is specified in Leibniz' notation for the integration of continuous functions

$$
\int_a^b f(t) \, dt.
$$

This may be done by writing the variable of integration in the "limit of integration" as follows:

$$
\int_{t \in A} f = \int_{t \in A} f(t).
$$

Notice that in the notational variant on the right, the name of the function may not appear:

$$
\int_{t \in (0,\infty)} \left(\frac{\chi_{(0,1)}(t)}{\sqrt{t}} + \frac{\chi_{(1,\infty)}(t)}{t^2} \right) = \int_0^1 \frac{1}{\sqrt{t}} dt + \int_1^\infty \frac{1}{t^2} dt = 3.
$$

Problem 7 (weak solutions) Consider the (single, nonautonomous) ordinary differential equation $x' = f(x, t)$ for $x \in C^1(\mathbb{R})$ where $f \in C^2(\mathbb{R}^2)$ is given.

Here is a definition:

Definition 1 (weak solution of a single ODE) A function $u \in C^0(\mathbb{R})$ is a **continuous** weak solution of the ordinary differential equation $x' = f(x, t)$ if

$$
-\int_{\mathbb{R}} u\phi' = \int_{t \in \mathbb{R}} f(u(t),t)\phi(t) \quad \text{for every } \phi \in C_c^1(\mathbb{R}).
$$

(a) You (should) know what $f \in C^0(\mathbb{R}^2)$ means, and you (should) know what $f \in C^0(\mathbb{R}^2)$ $C^1(\mathbb{R}^2)$ means. Can you guess (or find out) what $f \in C^2(\mathbb{R}^2)$ means?

(b) Find a weak solution of the ordinary differential equation

$$
\frac{dy}{dt} = 2h(t) - 1\tag{8}
$$

where h is the Heaviside function.

- (c) Find all continuous weak solutions of the ordinary² differential equation (8).
- (d) Show that if u is a continuous weak solution of $x' = f(t)$, then every (other) continuous weak solution w of $x' = f(t)$ satisfies $w(x) = u(x) + c$ for some constant $c \in \mathbb{R}$. (Hint: Show every continuous weak solution of $x' = 0$ is constant.)

²Or maybe not so ordinary.

Problem 8 (vector space; linear algebra) In Problem 4 above I mentioned that the spaces $C_c^0(\mathbb{R})$ and $C_c^1(\mathbb{R})$ of test functions were subspaces of $C^0(\mathbb{R})$ and $C^1(\mathbb{R})$ respectively. I had in mind the following definitions from linear algebra:

Definition 2 (vector space) A set V is a real vector space if there is an operation of addition $+: V \times V \to V$ by $(v, w) \mapsto v + w$, i.e., a way to add two vectors in V to get back a (sum) vector $v + w$ in V, satisfying

- **VS1** $v + w = w + v$ and $(v + w) + z = v + (w + z)$, i.e., addition is commutative and associative.
- **VS2** There is some vector $0 \in V$, called the **zero vector** for which

$$
v + \mathbf{0} = v \qquad \text{for every } v \in V.
$$

The zero vector is also called the **additive identity**.

VS3 For every $v \in V$ there is a vector $w \in V$ such that

$$
v+w=\mathbf{0}.
$$

In this case, the vector w is called the **additive inverse** of v and is denoted by $-v.$

In addition to addition, there is scaling $\mathbb{R} \times V \to V$ by $(a, v) \mapsto av$ which satisfies

VS4 $(ab)v = a(bv)$ for all $a, b \in \mathbb{R}$ and $v \in V$.

VS5 $1v = v$ for all $v \in V$.

VS6 $a(v + w) = av + aw$. (Scaling distributes across vector addition.)

VS7 $(a + b)v = av + bv$. (A scaled vector distributes across a sum of scalars.)

Definition 3 Given a vector space V, a subset $W \subset V$ is said to be a subspace of V is W is a vector space with respect to the same operations and with the same additive identity.

Definition 4 Given two real vector spaces V and W, a function $L: V \to W$ is said to be linear if

 $L(av + bw) = aL(v) + bL(w)$ for all $a, b \in \mathbb{R}$ and $v, w \in V$.

- (a) Show $C^0(\mathbb{R})$ is a vector space.
- (b) Show that given any vector space V the subset $W \subset V$ is a subspace if and only if W satisfies the following property:

For any $a, b \in \mathbb{R}$ and $v, w \in W$ there holds $av + bw \in W$.

In this case, W is said to be closed under scaling and addition, or simply closed under linear combinations.

- (c) Show $C_c^1(\mathbb{R})$ is a subspace of $C^0(\mathbb{R})$.
- (d) Given $f \in C^0(\mathbb{R})$, show $P: C_c^1(\mathbb{R}) \to \mathbb{R}$ by

$$
P(\phi) = -\int_{\mathbb{R}} f\phi'
$$

is linear. This linear function P is called the **weak differentiation operator**.

(e) Show $D: C^1(\mathbb{R}) \to C^0(\mathbb{R})$ by

$$
Du = \frac{du}{dx}
$$

is linear. This linear function D is called the **classical differentiation oper**ator.

Problem 9 A function $f \in C^{\infty}(\mathbb{R})$, i.e., a function with derivatives $f^{(j)}$ existing for every $j = 0, 1, 2, \ldots$, is said to be **real analytic** or C^{ω} (read "f is C-omega") if for each $x, x_0 \in \mathbb{R}$ the series

$$
\sum_{j=0}^{\infty} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j
$$
 (9)

converges to a real number and that real number satisfies

$$
f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j.
$$

- (a) Show the exponential function $\exp(x) = e^x$ is in $C^{\omega}(\mathbb{R})$.
- (b) Find a function $u \in C^{\infty}(\mathbb{R}) \backslash C^{\omega}(\mathbb{R})$.

Problem 10 There is a series construction/expansion similar to the one you know from Problem 9 above which applies to functions of several variables. Given an open set $U \subset \mathbb{R}^n$ and a function $u \in C^{\infty}(U)$, meaning that all partial derivatives of all orders are well-defined, the **multidimensional Taylor series** associated with u at $\mathbf{x}_0 \in U$ is defined to be

$$
\sum_{j=1}^{\infty} \sum_{|\beta|=j} \frac{D^{\beta} u(\mathbf{x}_0)}{\beta!} (\mathbf{x} - \mathbf{x}_0)^{\beta}.
$$
 (10)

.

You (most likely) do not understand (many things about) this expression. Please proceed anyway.

(a) In the expansion formula (10) the symbol $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$ denotes a multiindex. This means $\beta_j \in \mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ for each $j = 1, 2, ..., n$. The "magnitude" of the multi-index β is defined by

$$
|\beta| = \sum_{j=1}^{n} \beta_j.
$$

Find all the multiindices with $|\beta|=2$ when $n=3$.

(b) The multi-index partial derivatives appearing in (10) are given in the usual notation by

$$
D^{\beta}u = \frac{\partial^{|\beta|}u}{\partial x_1^{\beta_1} \partial x_2^{\beta_2} \cdots \partial x_n^{\beta_n}}
$$

Perhaps you can see why the multi-index partial derivative notation is preferable when one is dealing with high order partial derviatives. For example, given $u = u(x, y, z)$ we can write

$$
D^{(2,0,0)}u = \frac{\partial^2}{\partial x^2}.
$$

Write down all the second partials of a function u when $n = 3$ in both forms as I have done.

(c) The factorial and the power appearing in (10) are defined as follows:

$$
\beta! = \beta_1! \beta_2! \cdots \beta_n! \quad \text{and} \quad \mathbf{x}^{\beta} = x_1^{\beta_1} x_2^{\beta_2} \cdots x_n^{\beta_n}.
$$

On page 192 Boas gives the second order terms of the power series expansion for a function of two variables:

$$
\frac{1}{2!} \left[f_{xx}(x_0, y_0)(x-x_0)^2 + 2 f_{xy}(x_0, y_0)(x-x_0)(y-y_0) + f_{yy}(x_0, y_0)(y-y_0)^2 \right].
$$

Isolate the second order terms in (10) when $n = 2$, and show the second order terms form (10) are the same as Boas' second order terms.

(d) (Boas Problem 4.2.5) Find the Taylor expansion of $u(x, y) = \sqrt{1 + xy}$ at $(x_0, y_0) =$ (0, 0) using Boas' formula

$$
u(x,y) = \sum_{n=0}^{\infty} \frac{1}{n!} \left((x - x_0) \frac{\partial}{\partial x} + (y - y_0) \frac{\partial}{\partial y} \right)^n f_{\big|_{(x_0, y_0)}}
$$

and using formula (10).