
Assignment 2: Solutions

Due Friday, January 31, 2025

John McCuan

February 2, 2025

Problem 1 Draw the set

{x + hej : |h| < δ} ⊂ R
n

when

(a) n = 2, x = (2, 1) and δ = 1/3.

(b) n = 3, x = (1, 0, 1/2) and δ = 1/4.
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Solution:

Figure 1: I1 = {(2, 1) + he1 : |h| < 1/3} and I2 = {(2, 1) + he2 : |h| < 1/3} in R
2

Figure 2: I1 = {(1, 0, 1/2)+ he1 : |h| < 1/4}, I2 = {(1, 0, 1/2)+ he2 : |h| < 1/4}, and
I3 = {(1, 0, 1/2) + he3 : |h| < 1/4} in R3
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Problem 2 (convexity) Recall the following definition: A function f : (a, b) → R is
convex if the inequality

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2) (1)

holds whenever x1, x2 ∈ (a, b) and 0 ≤ t ≤ 1.
Show that if f is convex, then

lim
x→x0

f(x) = f(x0). (2)

Hint: Assume there is some ǫ > 0 and a sequence of points x1, x2, x3, . . . with xj ր x0
and f(xj) ≤ f(x0)− ǫ. If you can get a contradiction out of this, it means

lim
xրx0

f(x) ≥ f(x0).

What does (2) tell you about convex functions?

Solution: The details of the suggested proof may be found in my solution of Problem 4
of Assignment 1. I will give a somewhat different and more direct proof here:

I proceed to establish some inequalities. Let

α =
a + x0

2
and β =

x0 + b

2
.

It is very easy to see that a < α < β < b. If α < x < x0, then taking

λ =
x− α

x0 − α

I have

(1− λ)α+ λx0 =
x0 − x

x0 − α
α+

x− α

x0 − α
x0 = x.

Therefore by convexity

f(x) ≤ (1− λ)f(α) + λf(x0)

= f(x0) +
x0 − x

x0 − α
[f(α)− f(x0)]

= f(x0) +
f(x0)− f(α)

x0 − α
(x− x0). (3)
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Next, let

λ =
x0 − x

β − x
so that 1− λ =

β − x0
β − x

and (1− λ)x+ λβ = x0.

In this case, we have by convexity

f(x0) ≤ (1− λ)f(x) + λf(β)

or

f(x) ≥
1

1− λ
[f(x0)− λf(β)]

=
β − x

β − x0
f(x0)−

x0 − x

β − x0
f(β)

= f(x0) +
f(β)− f(x0)

β − x0
(x− x0). (4)

Combining (3) and (4) we have

f(x0) +
f(β)− f(x0)

β − x0
(x− x0) ≤ f(x) ≤ f(x0) +

f(x0)− f(α)

x0 − α
(x− x0)

and
f(β)− f(x0)

β − x0
(x− x0) ≤ f(x)− f(x0) ≤

f(x0)− f(α)

x0 − α
(x− x0)

and
−M |x− x0| ≤ f(x)− f(x0) ≤M |x− x0|,

that is
|f(x)− f(x0)| ≤M |x− x0|

for

M = max

{

|f(β)− f(x0)|

β − x0
,
|f(x0)− f(α)|

x0 − α

}

and α < x < x0. For x0 < x < β, we can similarly establish that

|f(x)− f(x0)| ≤M |x− x0|

for the same positive constant M . See Figure 3 for an illustration of the inequality

f(x0) +
f(x0)− f(α)

x0 − α
(x− x0) ≤ f(x) ≤ f(x0) +

f(β)− f(x0)

β − x0
(x− x0)

for x0 < x < β.
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Figure 3: Bounds on f(x) for x0 < x < β.

Finally, letting ǫ > 0 be arbitrary, we have that if

|x− x0| <
ǫ

M
,

then for α ≤ x ≤ β

|f(x)− f(x0)| ≤M |x− x0| < M
ǫ

M
= ǫ.

We conclude f is continuous at x0.
Here the constant M does not depend on x but does depend on a, b, and x0.
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Problem 3 Review the definitions in Problem 8 (continuity) and Problem 9 (differ-
entiability) of Assignment 1. Show that if a function f : (a, b) → R is differentiable
at a point x ∈ (a, b), then f is continuous at x.

Solution: Let ǫ > 0. By differentiability there is some δ1 > 0 so that

∣

∣

∣

∣

f(x+ h)− f(x)

h
− f ′(x)

∣

∣

∣

∣

< ǫ whenever 0 < |h| < δ1.

Notice that this inequality implies

|f(x+ h)− f(x)− hf ′(x)| < ǫ|h|,

and if we relax the strict inequality, we can say

|f(x+ h)− f(x)− hf ′(x)| ≤ ǫ|h| whenever |h| < δ1.

In particular, if

|ξ − x| < δ = min

{

δ1,
1

2
,

ǫ

2(1 + |f ′(x)|)

}

,

and we take h = ξ − h with |ξ − h| < δ, then

|f(ξ)− f(x)| = |f(x+ h)− f(x)|

= |f(x+ h)− f(x)− hf ′(x) + hf ′(x)|

≤ |f(x+ h)− f(x)− hf ′(x)|+ |hf ′(x)|

≤ ǫ|h|+ |h||f ′(h)|

< ǫ
1

2
+

ǫ

2(1 + |f ′(x)|)
|f ′(h)|

<
ǫ

2
+
ǫ

2
= ǫ.

This shows f is continuous at x.
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Problem 4 Draw a picture of the graph

G = {(x, y, u(x, y)) : (x, y) ∈ A}

where A = (0, 1)× (0, 2) is an open rectangle and

u(x, y) = 1 + x2.

Draw in red the curves

{(1/2 + t, 1, u(1/2 + t, 1)) : 0 ≤ t ≤ 1/2} ⊂ G

and
{(1/2, 1 + t, u(1/2, 1 + t)) ∈ R

2 : 0 ≤ t ≤ 1/2}.

Illustrate the (two) difference quotients

u(1/2 + h, 1)− u(1/2, 1)

h
and

u(1/2, 1 + h)− u(1/2, 1)

h

for u at (1/2, 1) with h = 1/4.

Solution: Write

Γ1 = {(1/2 + t, 1, u(1/2 + t, 1)) : 0 ≤ t ≤ 1/2}

and
Γ2 = {(1/2, 1 + t, u(1/2, 1 + t)) ∈ R

2 : 0 ≤ t ≤ 1/2}.
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Figure 4: The graph G with the curve Γ1 and Γ2 (left). The x-difference quotent
(middle). The y-difference quotient with zero increment in the codomain (right).

Note that Γ2 is a horizontal segment and the codomain increment is u(1/2, 1 +
1/2)− u(1/2, 1) = 0.
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Problem 5 Give an example to show that the existence of the partial derivatives

∂u

∂xj
(x) = lim

h→0

u(x+ hej)− u(x)

h

for each x ∈ Rn and each j = 1, . . . , n, i.e., partial differentiability, does not imply
continuity (when n > 1).

Solution: Consider the function u : R2 → R with values given by

u(x, y) =

{

(x4−6x2y2+y4

(x2+y2)2
, (x, y) 6= (0, 0)

1, (x, y) = (0, 0).

It is clear that
∂u

∂x
(x, y) and

∂u

∂y
(x, y)

exist when (x, y) 6= (0, 0) since in this case the denominator (x2 + y2)2 is nonzero,
and the local expression for the function is entirely nonsingular. When either x = 0
or y = 0, there holds

u(x, y) = 1.

Consequently,

∂u

∂x
(0, 0) = lim

v→0

u(v, 0)− u(0, 0)

v
= 0 and

∂u

∂y
(0, 0) = lim

v→0

u(0, v)− u(0, 0)

v
= 0.

Thus, this function has well-defined partial derivatives at every point (x, y) ∈ R2.
On the other hand, if x = y 6= 0, then

u(x, y) = −4
x4

(2x2)2
≡ −1.

In particular,
lim
x→0

u(x, x) = −1 6= u(0, 0) = 1.

Thus, u /∈ C0(R2).

9



Problem 6 (increments and tolerances; Boas Problem 4.4.1) Consider f : (0,∞) →
R by

f(x) =
1

x3
.

Note that

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= −

3

x4
.

(a) Given x > 0 and a tolerance ǫ1 > 0, find a tolerance δ1 > 0 so that

0 < |h| < δ1 implies

∣

∣

∣

∣

f(x+ h)− f(x)

h
+

3

x4

∣

∣

∣

∣

< ǫ1. (5)

Hint: Assume δ1 < min{x/2, δ} where δ is some other number. Use the estimate
δ1 < x/2 to simplify the “extraneous” algebraic expression you obtain from
simplifying the quantity to be estimated in (5). Then determine how small you
need to make δ. Your answer should depend on ǫ1 and x.

(b) Given x > 0 and a tolerance ǫ0 > 0, find a tolerance δ0 for which

0 < |h| < δ0 implies

∣

∣

∣

∣

1

(x+ h)3
−

1

x3

∣

∣

∣

∣

< ǫ0. (6)

Hint: Use the same approach as in part (a); but this one is easier.

(c) Say you can’t pick the tolerance δ0 in part (b), but you are stuck with |h| ≤ δ0 =
1. What is the best tolerance ǫ0 you can get in (6)?

Solution: Let’s just start by having a look at the difference quotient

f(x+ h)− f(x)

h
=

1

h

(

1

(x+ h)3
−

1

x3

)

= −
h2 + 3xh + 3x2

x3(x+ h)3
. (7)

Thus, if we take the difference we have

f(x+ h)− f(x)

h
+

3

x4
=

3(x+ h)3 − xh2 − 3x2h− 3x3

x4(x+ h)3

=
h(6x2 + 8xh)

x4(x+ h)3

= 2h

(

3

x2(x+ h)3
+

4h

x3(x+ h)3

)

,

and for part (a) we want to take h small so this is smaller than some specified
increment ǫ1.
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(a) The hint suggests taking |h| < x/2, and we can see immediately that this gives
some relief from those denominators, since this means

x+ h >
x

2
> 0 and 0 <

1

x+ h
<

2

x
.

With this estimate we have
∣

∣

∣

∣

f(x+ h)− f(x)

h
+

3

x4

∣

∣

∣

∣

≤ 2|h|

(

24

x5
+

32|h|

x6

)

=
16|h|

x6
(3x+ 4|h|).

Again using |h| < x/2 we can simplify this to
∣

∣

∣

∣

f(x+ h)− f(x)

h
+

3

x4

∣

∣

∣

∣

≤
16(5)|h|

x5
.

Clearly, then if we have

|h| < δ1 = min

{

x

2
,
x5

80
ǫ1

}

then there will hold
∣

∣

∣

∣

f(x+ h)− f(x)

h
+

3

x4

∣

∣

∣

∣

< ǫ1.

(b) Here we are asked to estimate the simple difference |f(x + h) − f(x)|, so I can
multiply the expression in (7) by h to get

∣

∣

∣

∣

1

(x+ h)3
−

1

x3

∣

∣

∣

∣

≤
h2 + 3x|h|+ 3x2

x6
(8|h|) ≤

56|h|

x4

as long as |h| < x/2. Thus, taking

|h| < δ0 = min

{

x

2
,
x4

56
ǫ1

}

gives the desired conclusion. The restriction |h| > 0 is unnecessary in this case.

(c) This is rather harder if we really want the best possible tolerance. The point is
that the expression

α(h) =

∣

∣

∣

∣

1

(x+ h)3
−

1

x3

∣

∣

∣

∣

=
|h|

x3

∣

∣

∣

∣

h2 + 3xh + 3x2

(x+ h)3

∣

∣

∣

∣

11



should have a maximum value for some h with |h| ≤ 1. This maximum value
is the best tolerance for which we can hope if we only know |h| ≤ 1. It’s just a
calculus problem of course. For h 6= 0 and h 6= −x we have

x3α′(h) =
h(2h+ 3x) + h2 + 3xh + 3x2

(x+ h)3
−

3h(h2 + 3xh+ 3x2)

(x+ h)4
=

3x2

(x+ h)4
.

Since this derivative doesn’t vanish, we can consider (mostly) the boundary
values h = ±1. We find

α(−1) = −
3x2 − 3x+ 1

x3(x− 1)3
and α(1) =

3x2 + 3x+ 1

x3(x+ 1)3
.

Notice that if x gets close to x = 1 with x < 1, then the expression for α(−1)
tends to +∞. This looks like trouble for a maximum value.

Returning to the original expression when x = 1, we have

α(h) =

∣

∣

∣

∣

1

(1 + h)3
− 1

∣

∣

∣

∣

≥
1

(1 + h)3
− 1

and

lim
hց−1

1

(1 + h)3
= +∞.

Thus, if x = 1, all bets are off. That is to say one can’t get any finite tolerance
whatsoever in (6). This same problem persists for any x with 0 < x ≤ 1,
because then the original expression has

lim
hց−x

∣

∣

∣

∣

1

(x+ h)3
−

1

x3

∣

∣

∣

∣

= +∞.

If on the other hand, x > 1, then we should be able to get a tolerance. In that
case,

α(1)− α(−1) =
3x2 + 3x+ 1

x3(x+ 1)3
+

3x2 − 3x+ 1

x3(x− 1)3
= 2

3x2 + 1

(x2 − 1)3
> 0,

so

α(1) =
3x2 + 3x+ 1

x3(x+ 1)3
> 0
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is the maximum value, and this is the tolerance we can expect: If x > 1, then

∣

∣

∣

∣

1

(x+ h)3
−

1

x3

∣

∣

∣

∣

<
3x2 + 3x+ 1

x3(x+ 1)3

if |h| < 1. If you can have h = 1 as I’ve written, then you can have equality

∣

∣

∣

∣

1

(x+ h)3
−

1

x3

∣

∣

∣

∣

≤
3x2 + 3x+ 1

x3(x+ 1)3
,

so if you really want an estimate like (6) with strict inequality, you can take
any number ǫ0 with

ǫ0 >
3x2 + 3x+ 1

x3(x+ 1)3
.

Technically, in this case there is no “best” tolerance in (6). On the other hand
(6) itself contains the hypothesis |h| < δ0, so probably what I meant to say in
part (c) is that you are stuck with |h| < δ0 = 1 instead of |h| ≤ δ0 = 1 (which
is what I actually typed). In any case, the solution above hopefully makes the
overall situation clear and might even be correct.
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Problem 7 A function f : C → C with real and imaginary parts expressed as
functions u, v ∈ C2(R2) so that f(x+ iy) = u(x, y) + v(x, y) i is said to be complex
differentiable at z = x+ iy ∈ C if

f ′(z) = lim
h→0+0i

f(z + h)− f(z)

h

exists. Show that if f is complex differentiable at every z = x + iy ∈ C, then the
functions u and v satisfy

∂2u

∂x2
+
∂2u

∂y2
= 0

and
∂2v

∂x2
+
∂2v

∂y2
= 0.

Hint: Take the limit first in the special case where h = ǫ ∈ R. Then take the limit
in the special case where h = ǫ i. In each case you should get answers involving first
order partial derivatives of u and v. Because the answers you get look different, but
according to the definition of what it means to be complex differentiable must be the
same, you should be able to obtain some interesting relations among the first partial
derivatives.

Solution: First we take the limit of the complex difference quotient with increment
h + ik = h ∈ R keeping in mind the one-to-one correspondence ψ : C → R

2 with
ψ(x+ iy) = (x, y):

f ′(z) = lim
h→0

f(z + h)− f(z)

h
= lim

h→0

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h
.

After algebraic rearrangement and taking the real limits, we find

f ′(z) = ux(x, y) + ivx(x, y). (8)

Next, we take the same limit with a purely complex increment h+ ik = ik:

f ′(z) = lim
k→0

u(x, y + k) + iv(x, y + k)− u(x, y + k)− iv(x, y + k)

ik

=
1

i
[uy(x, y) + ivy(x, y)]

= vy(x, y)− iuy(x, y)
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because 1/i = i/(i2) = −i. Equating the two expressions for f ′(z) we see

ux + ivx = vy − iuy.

Further equating the real and imaginary parts gives the Cauchy-Riemann equations

{

ux = vy
uy = −vx.

Since u, v ∈ C2(R2), there is no problem taking second derivatives:

{

uxx = vxy
uxy = −vxx

and

{

uxy = vyy
uyy = −vxy.

The first and last equation give

uxx = vxy = −uyy or ∆u = 0.

Similarly,
∆v = vxx + vyy = −uxy + uxy = 0.
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Problem 8 (Exercise 1.26 in my notes) Recall the following definition:

Definition 1 (differentiability for a function of several variables) Given an open set
U ⊂ Rn and u : U → R, we say u is differentiable at p ∈ U if there exists a linear
function L : Rn → R such that

u(x)− u(p)− L(x− p) = ◦(‖x− p‖)

as x → p. The notation on the right here is read “little-o of ‖x− p‖.” It means the
limit of the quotient of u(x)− u(p)− L(x− p) and ‖x− p‖ is zero as x tends to
p, or more properly for any ǫ > 0, there is some δ > 0 such that

0 < ‖x− p‖ < δ implies

∣

∣

∣

∣

u(x)− u(p)− L(x− p)

‖x− p‖

∣

∣

∣

∣

< ǫ.

Show differentiability implies partial differentiability. Hint: One way that x can limit
to p ∈ U is in the form x + hej as h tends to zero.

Solution: First let L = L(e1). (This is called an “abuse of notation” because I’m using
L to mean two different things here. On the one hand, L : Rn → R is some linear
function. On the other hand, I’ve decided to let the symbol L represent one particular
value L(e1) ∈ R. We’ll have to be a little careful to keep track of the meaning as we
read the solution. A safer and perhaps better way would be to introduce a different
symbol and write something like ℓ = L(e1) ∈ R or M = L(e1) ∈ R. What I’m doing
can be dangerous...real “living on the edge” for a mathematician.)

For any ǫ > 0 there is some δ > 0 so that

0 < ‖x− p‖ < δ implies

∣

∣

∣

∣

u(x)− u(p)− L(x− p)

‖x− p‖

∣

∣

∣

∣

< ǫ.

In particular, if we set x = p+ he1 and 0 < |h| < δ, then we should have

∣

∣

∣

∣

u(p+ he1)− u(p)− L(he)

‖he1‖

∣

∣

∣

∣

< ǫ.

Since L is a linear function L(he1) = hL(e1) = hL. Also, ‖he1‖ = h, so

∣

∣

∣

∣

u(p+ he1)− u(p)

h
− L

∣

∣

∣

∣

< ǫ

16



whenever 0 < |h| < δ. This is exactly what it means for the limit

∂u

∂x1
(p) = lim

h→0

u(p+ he1)− u(p)

h

to exist.
There is nothing special about e1 in this argument. We could just as easily have

used ej for any j = 1, 2, . . . , n in place of e1. Thus, if u is differentiable at p ∈ U ,
then

uxj
(p) =

∂u

∂xj
(p)

exists for every j = 1, 2, . . . , n. Thus, u is partially differentiable at p.
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Problem 9 (partial derivatives in Problem 7 above) In Problem 7 above you should
have noticed that the partial derivatives of u are given by

∂u

∂xj
(p) = L(ej)

where L = dup : Rn → R is the differential map. What does this tell you about
the linear function L = dup? Hint: What do you know about a real valued linear
map L : Rn → R (from linear algebra)?

Solution: A linear map L : Rn → R is given by a dot product

L(x) = x ·w. (9)

This is a special case of what is called the Riesz representation theorem. Furthermore,
hopefully you remember from linear algebra that the vectorw has components/entries
given by the value of L on the standard unit basis vectors. That is in this case

w = (L(e1), L(e2), . . . , L(en)).

Since

L(ej) =
∂u

∂xj

we see the vector w is the vector containing the first partials as entries, that is the
gradient vector Du. We conclude

L(v) = Du · v.

In words, the linear map L is the dot product with the gradient.
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Problem 10 Note the following:

(i) In Problem 5 above you showed partial differentiability does not imply continuity.

(ii) In Problem 8 above you showed differentiability implies partial differentiability.

Can you show differentiability implies continuity?

Solution: We should be able to adapt the solution of Problem 3 above to higher
dimensions. We need one additional estimate: Recall from Problem 9 that

dup(v) = Du(p) · v.

The Cauchy-Schwarz inequality than implies

|dup(v)| ≤ |Du(p)||v| (10)

which is an estimate that holds for all v ∈ Rn.
Let ǫ > 0. By differentiability there is some δ1 > 0 so that

∣

∣

∣

∣

u(x)− u(p)

|x− p|
−
dup(x− p)

|x− p|

∣

∣

∣

∣

< ǫ whenever 0 < |x− p| < δ1.

Notice this inequality implies

|u(x)− u(p)− dup(x− p)| < ǫ|x− p|,

and if we relax the strict inequality, we can say

|U(x)− u(p)− dup(x− p)| ≤ ǫ|x− p| whenever |x− p| < δ1.

In particular, if

|x− p| < δ = min

{

δ1,
1

2
,

ǫ

2(1 + |Du(p)|)

}

,

then

|u(x)− u(p)| = |u(x)− u(p)− dup(x− p) + dup(x− p)|

≤ |u(x)− u(p)− dup(x− p)|+ |dup(x− p)|

≤ ǫ|x− p|+ |Du(p)| |x− p|

< ǫ
1

2
+

ǫ

2(1 + |Du(p)|)
|Du(p)|

<
ǫ

2
+
ǫ

2
= ǫ.

This shows u is continuous at p.
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