
Assignment 2: Partial derivatives

some solutions

John McCuan

February 7, 2023

Problem 1 Draw the set

{x + hej : |h| < δ} ⊂ R
n

when

(a) n = 2, x = (2, 1) and δ = 1/3.

(b) n = 3, x = (1, 0, 1/2) and δ = 1/4.

Partial Solution: In general these are open line segments.

(a) If j = 1, then the drawing should look like this:

Figure 1: A drawing of the set {x+ he1 : |h| < 1/3} ⊂ R
2.
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Problem 2 (convexity) Recall the following definition: A function f : (a, b) → R is
convex if the inequality

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2) (1)

holds whenever x1, x2 ∈ (a, b) and 0 ≤ t ≤ 1.
Show that if f is convex, then

lim
x→x0

f(x) = f(x0). (2)

Hint: Assume there is some ǫ > 0 and a sequence of points x1, x2, x3, . . . with xj ր x0

and f(xj) ≤ f(x0)− ǫ. If you can get a contradiction out of this, it means

lim
xրx0

f(x) ≥ f(x0).

What does (2) tell you about convex functions?

Problem 3 Draw a picture of the graph

G = {(x, y, u(x, y)) : (x, y) ∈ A}

where A = (0, 1)× (0, 2) is an open rectangle and

u(x, y) = 1 + x2.

Draw in red the curves

{(1/2 + t, 1, u(1/2 + t, 1)) : 0 ≤ t ≤ 1/2} ⊂ G

and
{(1/2 + t, u(1/2 + t, 1)) ∈ R

2 : 0 ≤ t ≤ 1/2}.
Illustrate the (two) difference quotients

u(1/2 + h, 1)− u(1/2, 1)

h
and

u(1/2, 1 + h)− u(1/2, 1)

h

for u at (1/2, 1) with h = 1/4.
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Problem 4 Here is a definition of what it means for a subset of Rn to be open: A
set U ⊂ R

n is open if for each

p =

n
∑

j=1

pjej ∈ U,

there is some δ > 0 for which

Qδ(p) =

{

x =

n
∑

j=1

xjej : |xj − pj| <
δ

2

}

⊂ U. (3)

The set Qδ(p) is called the open cube of side length δ centered at p.
Show that for δ > 0 and p ∈ R

n, the cube Qδ(p) is open.

Note: It has come to my attention that some of you have difficulty reading the
problem above. I did not intend for you to have that difficulty, but in retrospect I
can understand to some extent why you do have difficulty. For that reason, let me
offer the following “reading hints” for this problem. If you have no difficulty reading
the problem, you can ignore this and just skip to the solution below, though I do make
some reference to this discussion there. If you have any difficulty understanding the
statement of this problem, I hope this note will remedy that situation though it will
require (as with most mathematical topics) some patience and attention to detail.

First note the large scale structure of the problem:

1. First there is a definition (of what it means to be an open set). This starts
with the first colon and ends after the displayed expression (3).

2. After that is an explanatory comment, noting that some notation (for an object
called a cube) has been introduced within the definition. In effect, I have
defined a cube within the definition of an open set. That is, there is a definition
within the definition. This may have potentially been more clearly expressed if
I defined what it means for a set to be a cube first, before I gave the definition
of an open set. (It may be helpful for you to rewrite the problem giving an
exposition in this way: “First I’m going to define what it means for a set to be
a cube with side length δ and center p. . . . Now, I’m going to define what it
means for a set to be open.. . . ” I’ll leave that to you.)

3. Finally, there is the statement of the problem starting with the word “Show.”
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When you encounter a problem like this, where a definition (or two) is given first,
then (very likely) you will need to “internalize” the definition before you will be able
to solve the problem. That is, you need to understand what is being said. So be
patient and think about the definitions first. You can start with the notion of a cube.
It may help to draw what a cube looks like in dimensions n = 1, n = 2, and n = 3,
where the pictures are relatively easy to draw.

Once you understand, i.e., have internalized, what a cube is and how it works,
then you can move on to the definition of an open set. Again, drawing a picture or
two may be helpful. For example, B1(0) = {(x, y) ∈ R

2 : x2 + y2 < 1} is an open
subset of R2. You can draw this unit disk with center at the origin 0 = (0, 0) and
consider various points p = (p1, p2) within it. Each point p you consider should have
associated with it a cube Qδ(p) of some side length δ satisfing Qδ(p) ⊂ B1(0). You
should note that the value of δ will depend on the particular point p you have chosen.
(For points p closer to the circle ∂B1(0) you’ll need smaller side lengths.)

When you read my definition of an open set, it may (hopefully) seem pretty
straightforward until you read the display (3) the complexity of which you may find
alarming. Leaving out some notation, it says a set U is open if whenever you take
a point p ∈ U , you can find some positive number δ so that (3) holds. If this was
your experience, then let me suggest to you the following psychological “trick.” Scan
through (3) and notice first the fact that there is a period at the end of (3). Thus,
you can say to yourself the following:

Whatever is in (3) looks complicated and like it will take some time to

understand, but whatever it is, when I understand what is being said there,

I will be done with this definition and I’ll understand the entire thing.

After telling yourself this, hopefully, you’ll conclude it is worth it to be patient and
figure out whatever it is that is being said in (3). You might also go ahead and scan
the next line from which you may pick up that fact that a big part of (3) is nothing
more than the definition of a new kind of set. In fact, that is most of what looks
complicated. From the point of view of the definition of an open set, all (3) is saying
is that the cube Qδ(p) is a subset of U . What is written there just looks big and
intimidating because it also contains the definition of a cube.

As a final general point about reading such a problem (and especially this prob-
lem): When you finish the “definition” part of the statement and begin the “problem”
part of the statement, you will need to be able to “let go” of the notation used in the
definition. That is to say, a definition is intended to communicate a certain concept.
It is assumed the concept will be internalized, and when the concept is internalized
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the notation becomes incidental. I used symbols like δ and p to give the definition of
a cube with center p and side length δ, but when I am done I “know” what a cube is,
and I can probably express my understanding in a way that “frees up” the symbols
δ and p for other uses. Let me give it a try:

A cube is a set in which the coordinates of each point satisfy the condi-

tion that the absolute value of the difference of each coordinate and the

corresponding coordinate of some fixed point, called the center, is strictly

less than some positive tolerance. Twice the tolerance is called the side

length of the cube.

Of course, my definition here is (perhaps) somewhat more difficult to understand than
the definition given in the problem, but it shows that I understand the definition.
Most importantly, it shows that the symbols δ and p are not essential parts of the
definition. I did not use those symbols. Thus, those symbols are “freed up” in my
mind to be used for other purposes. What I am describing here is important for this
problem. When I start the statement of the “problem” part with the word “Show,”
the symbols δ and p are about to be used in a context fundamentally distinct from
their use in the definition immediately preceeding. So you need to “clean the slate”
in your mind. When you consider Qδ(p) in the “problem” part, the symbols δ and p
have little or nothing to do with the symbols δ and p used in the predeeding definition.
To state the problem I could have said

Show that for r > 0 and a ∈ R
n, the cube Qr(a) is open.

This might have made reading the problem easier for you but, from the point of view
of mathematical exposition, it is irritating, and you won’t find this sort of thing in
the literature because it just uses too many unnecessary symbols. So I suggest you
just take the time to learn how to read such things. At least that’s what I’m hoping
you might do.
Solution: We apply the definition (of what it means for a set to be open), which
happens to include the definition of what it means for a set to be a cube, to the
particular set U = Qδ(p) (which is a cube). In order to apply the definition, we
must begin with an arbitrary point in U = Qδ(p). Let us call this point q. Thus,
we begin with q ∈ Qδ(p). Naturally, q = (q1, q2, . . . , qn) has some components
q1, q2, . . . , qn ∈ R. Another way to say express this obvious fact is to write

q =

n
∑

j=1

qjej.
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In such an expression, the vectors e1, e2, . . . , en are the standard unit basis vectors
already featured in Problem 1 above and discussed in Chapter 1 (section 1.1 page 15
under the heading “some notation from linear algebra”). So then, we begin with an
arbitrary point q ∈ Qδ(p). By the definition of the cube Qδ(p), we know

|qj − pj | <
δ

2
for j = 1, 2, . . . , n.

This means, in particular, that we have on hand n positive numbers

δ

2
− |qj − pj| > 0.

We need to find a positive side length, i.e., number/tolerance, so that the cube of that
side length centered at q is totally inside Qδ(p). We should not use the symbol δ for
this side length. Though this is the symbol used for the side length of the cube in
the definition, we have now moved to the “problem” portion, and the symbols δ and
p are already in use in a different context. So I need to use different symbols. I’ve
already started doing that when I chose the point q. So let me call the side length ǫ.
I’m looking for some ǫ > 0 for which Qǫ(q) ⊂ U = Qδ(p). Here is my choice:

ǫ = min{δ − 2|qj − pj| : j = 1, 2, . . . , n}. (4)

This same number can be expressed as

ǫ = min
1≤j≤n

(δ − 2|qj − pj|)

or
ǫ = δ − 2 max

1≤j≤n
|qj − pj |.

These are all the same number. The first two expressions are nice because I know
each of the numbers δ − 2|qj − pj| is positive, and so the minimum of a finite set of
positive numbers will also be positive. That is, ǫ > 0.

Finally, I want to check that my choice of side length “works.” That is, I need to
show Qǫ(q) ⊂ U = Qδ(p). For this, I should take an arbitrary point in Qǫ(q) and
show that point must also be in Qδ(p). Again, I need another symbol, and p and
q are already in use. I will use x = (x1, x2, . . . , xn) which is free at the moment. If
x ∈ Qǫ(q), then I know

|xj − qj | <
ǫ

2
for j = 1, 2, . . . , n.
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By the traingle inequality I get

|xj − pj| ≤ |xj − qj |+ |qj − pj|
<

ǫ

2
+ |qj − pj |

≤ δ

2
− |qj − pj |+ |qj − pj| (5)

=
δ

2
.

The second to last estimate (5) follows from the definition of ǫ in (4). Finally, I
conclude |xj − pj | < δ/2 for j = 1, 2, . . . , n, and this is what it means for x to be
in Qδ(p). I have shown Qǫ(q) ⊂ Qδ(p). Thus, I have shown Qδ(p) is open. �.
(Sometimes it’s nice to put a box at the end of an argument to let the sleepy reader
know there is nothing more on this topic forthcoming.1)

1The mathematician Carl Gauss popularized this idea by writing QED at the end of his argu-

ments. Roughly speaking this is an acronym for “What was to be shown,” i.e., “I have proved that

which was to be shown.” In Latin it’s “quod erat demonstrandum.” Apparently, Gauss anticipated

a lot of sleepy readers.
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Problem 5 (increments and tolerances; Boas Problem 4.4.1) Consider f : (0,∞) →
R by

f(x) =
1

x3
.

Note that

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= − 3

x4
.

(a) Given x > 0 and a tolerance ǫ1 > 0, find a tolerance δ1 > 0 so that

0 < |h| < δ1 implies

∣

∣

∣

∣

f(x+ h)− f(x)

h
+

3

x4

∣

∣

∣

∣

< ǫ1. (6)

Hint: Assume δ1 < min{x/2, δ} where δ is some other number. Use the estimate
δ1 < x/2 to simplify the “extraneous” algebraic expression you obtain from
simplifying the quantity to be estimated in (6). Then determine how small you
need to make δ. Your answer should depend on ǫ1 and x.

(b) Given x > 0 and a tolerance ǫ0 > 0, find a tolerance δ0 for which

0 < |h| < δ0 implies

∣

∣

∣

∣

1

(x+ h)3
− 1

x3

∣

∣

∣

∣

< ǫ0. (7)

Hint: Use the same approach as in part (a); but this one is easier.

(c) Say you can’t pick the tolerance δ0 in part (b), but you are stuck with |h| ≤ δ0 =
1. What is the best tolerance ǫ0 you can get in (7)?

Solution:

(a) Let

δ1 = min

{

x

2
,
x5

96
ǫ1

}

. (8)
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Then if 0 < |h| < δ1 we have

∣

∣

∣

∣

f(x+ h)− f(x)

h
+

3

x4

∣

∣

∣

∣

=

∣

∣

∣

∣

1

hx3(x+ h)3
[x3 − (x+ h)3] +

3

x4

∣

∣

∣

∣

=

∣

∣

∣

∣

1

hx3(x+ h)3
(−h)[x2 + x(x+ h) + (x+ h)2] +

3

x4

∣

∣

∣

∣

=

∣

∣

∣

∣

−x2 + x(x+ h) + (x+ h)2

x3(x+ h)3
+

3

x4

∣

∣

∣

∣

=

∣

∣

∣

∣

3

x4
− x2 + x(x+ h) + (x+ h)2

x3(x+ h)3

∣

∣

∣

∣

=

∣

∣

∣

∣

3(x+ h)3 − x[x2 + x(x+ h) + (x+ h)2]

x4(x+ h)3

∣

∣

∣

∣

=

∣

∣

∣

∣

3(x3 + 3x2h + 3xh2 + h3)− x[3x2 + 3xh + h2]

x4(x+ h)3

∣

∣

∣

∣

=
|h|

x4|x+ h|3 |6x
2 + 8xh+ 3h2|

≤ |h|
x4(x/2)3

|6x2 + 8xh + 3h2| (9)

≤ |h|
x4(x/2)3

12x2 (10)

=
96|h|
x5

(11)

< ǫ1.

The estimate (9) follows because |x+ h| > x/2. This follows, in turn, from the
triangle inequality becuase x = |x| = |x+h−h| ≤ |x+h|+ |h| < |x+h|+x/2.
The estimate (10) also uses (only) |h| < x/2 and the triangle inequality:

|6x2 + 8xh + 3h2| ≤ 6x2 + 8x|h|+ 3h2 < 6x2 + 4x2 +
3x2

4
< 10x2 + 2x2.

The expression in (11) explains the choice of δ1 in (8).

(b) We can proceed in much the same way: Let

δ0 = min

{

x

2
,
x4

48
ǫ0

}

.
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Then 0 < |h| < δ0 implies

∣

∣

∣

∣

1

(x+ h)3
− 1

x3

∣

∣

∣

∣

=

∣

∣

∣

∣

1

(x+ h)3
− 1

x3

∣

∣

∣

∣

=

∣

∣

∣

∣

−h
x2 + x(x+ h) + (x+ h)2

x3(x+ h)3

∣

∣

∣

∣

= |h|
∣

∣

∣

∣

x2 + x(x+ h) + (x+ h)2

x3(x+ h)3

∣

∣

∣

∣

= |h|
∣

∣

∣

∣

x2 + x(x+ h) + (x+ h)2

x3(x+ h)3

∣

∣

∣

∣

= |h| |3x
2 + 3xh + h2|
x3|x+ h|3

< |h|3x
2 + 3x2/2 + 3x2/4

x3|x+ h|3

< |h|3x
2 + 2x2 + x2

x3(x+ h)3

<
48|h|
x4

< ǫ0.

(c) This part is potentially much more difficult, specifically because I asked for the
“best” estimate. Immediately, this means all the simplification of assuming
|h| < x/2 is unavailable. This suggests, furthermore, that to do this correctly
one is going to have to consider some function of the tolerance h and execute
some kind of maximization. Fortunately, the answer is geometrically obvious,
so we can use this to guide the estimates and analysis if necessary. One can
see from the graph of f(x) = 1/x3 shown in Figure 2 that the prospects for
bounding the increment |f(x + h) − f(x)| for 0 < |h| < 1 are very different
when x ≤ 1 and when x > 1. If x ≤ 1 as indicated on the left in Figure 2, then
by taking −1 < h < 0 with h very close to −x, we can obtain arbitrarily large
values for the increment |f(x+ h) − f(x)|. Therefore, no finite tolerance ǫ0
can be attained as the problem suggests under the assumption |h| < 1 when
0 < x ≤ 1. If, on the other hand, x > 1 as illustrated on the right in Figure 2,
then we have 0 < x− 1 < x+ h < x+ 1 if |h| < 1, and an upper bound for the
maximum increment is clearly seen to be given by |f(x− 1)− f(x)|.
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Figure 2: The graph of 1/x3.

To analytically verify these assertions, we proceed as follows: We will first show
the difference |f(x+h)−f(x)| can always be made arbitrarily large when x ≤ 1.
Let N > 1 be arbitrary. Note that we can take some M > 0 satisfying

M3 > max

{

1

x
,N +

1

x3

}

.

It follows that −1 < 1/M − x < 0, so h = 1/M − x is an admissible increment
satisfying |h| < 1. The associated increment in f , however, satisfies

|f(1/M)− f(x)| ≥ M3 − 1

x3
> N.

This shows it is not possible for find any finite tolerance ǫ0 as suggested when
x ≤ 1.

When x > 1, on the other hand, we claim

∣

∣

∣

∣

1

(x+ h)3
− 1

x3

∣

∣

∣

∣

≤ f(x− 1)− f(x) =
1

(x− 1)3
− 1

x3
=

3x2 − 3x+ 1

x3(x− 1)3
.

If this claim is correct, then we have the desired tolerance

ǫ0 = f(x− 1)− f(x)
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since clearly
ǫ0 = lim

hց−1

[f(x+ h)− f(x)].

To see the claim, we consider the function φ : (−1, 1) → R given by

φ(h) = f(x+ h)− f(x).

Note that φ extends continuously to −1 ≤ h ≤ 1 and satisfies

dφ

dh
= f ′(x+ h) = − 1

(x+ h)3
< 0.

Thus φ is a decreasing function with a unique zero at h = 0 as indicated on the
left in Figure 3.

Figure 3: The graph of the increment φ = φ(h).

This means |φ(h)| has precisely two local max values given by |φ(−1)| and |φ(1)|. It
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remains to show ǫ0 = φ(−1) > −φ(1). To see this, observe

φ(−1) + φ(1) = f(x− 1)− f(x) + f(x+ 1)− f(x)

=
1

(x− 1)3
− 1

x3
−

(

1

x3
− 1

(x+ 1)3

)

=

(

1

x− 1
− 1

x

)(

1

(x− 1)2
+

1

x(x− 1)
+

1

x2

)

−
(

1

x
− 1

x+ 1

)(

1

x2
+

1

x(x+ 1)
+

1

(x+ 1)2

)

=
1

x(x− 1)

(

1

(x− 1)2
+

1

x(x− 1)
+

1

x2

)

− 1

x(x+ 1)

(

1

x2
+

1

x(x+ 1)
+

1

(x+ 1)2

)

=
1

x

[

1

x− 1

(

1

(x− 1)2
+

1

x(x− 1)
+

1

x2

)

− 1

x+ 1

(

1

x2
+

1

x(x+ 1)
+

1

(x+ 1)2

)]

.

Now notice first that
1

x− 1
>

1

x
>

1

x+ 1
.

It follows also that
1

(x− 1)2
>

1

x2
>

1

(x+ 1)2
.

Therefore,
1

(x− 1)2
+

1

x(x− 1)
+

1

x2
>

1

x2
+

1

x(x+ 1)
+

1

(x+ 1)2

and

1

x− 1

(

1

(x− 1)2
+

1

x(x− 1)
+

1

x2

)

>
1

x+ 1

(

1

x2
+

1

x(x+ 1)
+

1

(x+ 1)2

)

.

It follows that ǫ0 = φ(−1) > −φ(1). Consequently,

|φ(h)| = |f(x+ h) = f(x)| < ǫ0 =
3x2 − 3x+ 1

x3(x− 1)3
for |h| < 1,

and ǫ0 is the “best” such tolerance in the sense that it is the smallest such tolerance.
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Problem 6 (vector increments and tolerances; Boas Problem 4.4.3) The apparent
distance between the image of an object and a lens is modeled by a function I :
{(µ, φ) ∈ R

2 : 0 < φ < µ} → R as a function of the measured (model) distance µ
from the object to the lens and the (model) focal length φ of the lens by

I(µ, φ) =
µφ

µ− φ
.

Let us assume the values of µ0 = 10 and φ0 = 6 vary with a vector increment

(µ, φ) = (µ0, φ0) + (h, k)

where h, k ≥ 0, but it may be ensured (or we will assume) µ − φ is always bounded
below bym = 1. Estimate the possible (model) change in the apparent image distance
(increment)

|I(µ0 + h, φ0 + k)− I(µ0, φ0)| (12)

as follows:

(a) Draw the right triangle in U = {(µ, φ) ∈ R
2 : 0 < φ < µ} with vertices (µ0, φ0) =

(10, 6), (10, 6 + k), and (10 + h, 6 + k).

(b) Use the triangle inequality to show the increment in (12) is bounded above by
the sum of the increments

|I(µ0 + h, φ0 + k)− I(µ0, φ0 + k)| (13)

and
|I(µ0, φ0 + k)− I(µ0, φ0)|. (14)

(c) Express the increment in (14) in the form |f(k)− f(0)| for an appropriate choice
of f ∈ C1(0, k)∩C0[0, k], and then use the mean value theorem applied to f to
get an estimate of the form

|I(µ0, φ0 + k)− I(µ0, φ0)| ≤ G

(

∂I

∂µ
,
∂I

∂φ

)

≤ Mk

where the partial derivatives in the argument of the function G are evaluated
at an appropriate point illustrated in your drawing from part (a) above and M
has an explicit numerical value.
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(d) Apply the same approach to estimating the increment in (13) to show

|I(µ0 + h, φ0 + k)− I(µ0, φ0)| < Nh +Mk = ◦(1)

as (h, k) → (0, 0). For an explanation of the notation ◦(1) used here, see the
next problem.

Problem 7 (Exercise 1.26 in my notes) Recall the following definition:

Definition 1 (differentiability for a function of several variables) Given an open set
U ⊂ R

n and u : U → R, we say u is differentiable at p ∈ U if there exists a linear
function L : Rn → R such that

u(x)− u(p)− L(x− p) = ◦(‖x− p‖)

as x → p. The notation on the right here is read “little-o of ‖x− p‖.” It means the
limit of the quotient of u(x)− u(p)− L(x− p) and ‖x− p‖ is zero as x tends to
p, or more properly for any ǫ > 0, there is some δ > 0 such that

0 < ‖x− p‖ < δ implies

∣

∣

∣

∣

u(x)− u(p)− L(x− p)

‖x− p‖

∣

∣

∣

∣

< ǫ.

Show differentiability implies partial differentiability. Hint: One way that x can limit
to p ∈ U is in the form x + hej as h tends to zero.

Problem 8 (partial derivatives in Problem 7 above) In Problem 7 above you should
have noticed that the partial derivatives of u are given by

∂u

∂xj

(p) = L(ej)

where L = dup : Rn → R is the differential map. What does this tell you about
the linear function L = dup? Hint: What do you know about a real valued linear
map L : Rn → R (from linear algebra)?

Problem 9 Prove a multidimensional mean value theorem: If U is an open subset
of Rn and u ∈ C1(U) and the segment

Γ = {(1− t)p+ tq : 0 ≤ t ≤ 1}

is a subset of U , then there is some x along the segment Γ for which

u(q)− u(p) = Du(x) · (q− p).
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Problem 10 We have given a pretty careful discussion of derivatives (partial deriva-
tives, differentiability, differential approximation, and so forth) including estimates
and tolerances. In many instances, engineers use the differential approximation re-
sults above in a kind of informal manner without worrying really about how good
the approximation they are using actually is. One such approximation formula is the
following:

u(q) ≈ u(p) + dup(q− p)

which can also take the form(s)

u(q) ≈ u(p) +Du(p) · (q− p)

or
u(q) ≈ u(p) + 〈Du(p),q− p〉.

Use these informal approximation formulas to answer some questions from Boas:

(a) (Boas Problem 4.4.2) Show that for n “large” and a “small,”
√
n+ a−

√
n ≈ a

2
√
n
.

Approximate
√
1026 + 5− 1013.

(b) (Boas Problem 4.4.5) If resistors of R1 = 25 ohms and R2 = 15 ohms are con-
nected in parallel to produce a resistance of R, approximate the resistance R̃2

required of a resistor parallel to a resistor with R̃1 = 25.1 ohms if the resultant
resistance is still R.

(c) (Boas Problem 4.4.6) A model of a pendulum is used to approximate the (model)
acceleration of gravity using the relation

g = u(L, T ) =
4π2L

T 2

where L is the model variable for the measured length of the pendulum and T is
the model variable for the measured period. If the relative error in measurement
of L is assumed to be 5%, i.e.,

L− Lactual

Lactual

≤ 0.05,

and the relative error in measurement of T is assumed to be 2%, then approxi-
mately what error should one expect (in the worst case) for the model value of
g (compared to an assumed actual value of the gravitational acceleration)?
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