
Math 6702, Assignment 12

Mean Value Properties of Solutions of Laplace’s Equation on R
2

In the first four problems below U is an open bounded subset of R
2.

1. Let u ∈ C2(U) be a classical solution of ∆u = 0 on U . Show the following:

If Br(x0)⊂⊂U , then u(x0) =
1

2πr

∫

∂Br(x0)

u =
1

2πr

∫

x∈∂Br(x0)

u(x). (1)

Notice that the expression on the right is the average value of u over ∂Br(x0).

Hint(s): Set

f(r) =
1

2πr

∫

x∈∂Br(x0)

u(x),

and compute f ′(r). Then consider the limit of f(r) as r ց 0.

2. Let u ∈ C2(U) ∈ C0(U) be a classical solution of ∆u = 0 on U . Show the following:

If u∣
∣

∂U

≥ 0, then u ≥ 0 on U .

3. Let u ∈ C1(U) be a weak solution of ∆u = 0 on U . Show (1) still holds. Hint(s): Extend
u to ū = uχBr+ǫ(x0) where Br+ǫ(x0)⊂⊂U . Mollify ū and show µ ⋆ ū converges uniformly
to u as the mollifier µ intensifies. Finally, show that for intense mollification, v = µ ⋆ ū

is a classical solution of ∆v = 0 on Br+ǫ/2(x0).

4. Let u ∈ C1(U) be a weak solution of ∆u = 0 on U satisfying

u∣
∣

∂U

≥ 0.

Assume U is connected. Assume there is another (nonempty) open set U0 ⊂ U with

u∣
∣

U0

≡ 0.

Show u ≡ 0. Hint(s): Assume (BWOC) U0 ⊂ {x ∈ U : u(x) = 0} 6= U . Find, i.e., show
there exists, a ball Br(x0)⊂⊂U with

Br(x0) ⊂ U0 but Br+ǫ(x0) 6⊂ U0 for all ǫ > 0.

Use the mean value property to get a contradiction.

Just so you know and in case you want to read about it, there are much stronger results than
those given in problems 2 and 4 above, but the proof is more difficult and needs more
than just the mean value property/formula of problem 1. Specifically, for problem 2 one
can prove that given a connected component U∗ of U either u > 0 on U∗ or u ≡ 0 on
U∗. This amounts to what is called the E. Hopf strong maximum principle. The
usual way to prove it is with a result called the E. Hopf boundary point lemma.
Incidentally, Eberhard Hopf is not the mathematician you have (do doubt) heard of in
connection with the famous Hopf invariant and Hopf fibration. That would be Heinz
Hopf.



Green’s Theorem §6.9 (Boas)

5. You know Gauss’ theorem (or the divergence theorem) in the plane which says that given
a bounded C1 open domain U ⊂ R

2 in the domain of a vector field v we have
∫

U

div v =

∫

∂U

v · n.

Use Gauss’ theorem to prove Green’s theorem:

∫

U

(

∂Q

∂x
−
∂P

∂y

)

=

∫

∂U

v · T

where v = (P,Q) and T is the counterclockwise unit normal around ∂U .

Stokes’ Theorem §6.11 (Boas)

Stokes’ theorem states that if S is an oriented surface in R
3 in the domain of a (differ-

entiable) vector field v and having C1 boundary ∂S, then

∫

S

curlv ·N =

∫

∂S

v · T

where N is the unit normal orienting S and T is the counterclockwise unit tangent
around ∂S with respect to N .

The following is not the most wonderful problem in the world, but it is kind of fun.
If you’ve been following/picking up on what I’ve been saying about integration this
semester, then it should be way too easy...even sort of juvenile. If it’s not like this, then
start back with the basics of integration and become an integration ninja.

6. (6.11.16) According to Maxwell’s equations (in the potential formulation) any magnetic

field B : U → R
3 where U is a simply connected domain in R

3 satisfies

divB = 0 and B = curlA

where A is the magnetic vector potential. Observe that

0 =

∫

U

divB

=

∫

S

B ·N where S = ∂U by the divergence theorem

=

∫

S

curlA ·N

=

∫

∂S

A · T by Stokes theorem.



If for every closed loop Λ = ∂S we have

∫

Λ

A · T = 0,

then A is conservative. Therefore, there exists a potential function ψ with A = Dψ.
Consequently,

B = curlA = curlDψ = 0,

so all magnetic fields are zero fields. (You can check by calculation that it’s always
true that the curl of a gradient always vanishes.) Find the error(s) in this lovely “proof.”
Incidentally, the divergence of a curl always vanishes too. We don’t use that here, but
it’s good to know.

I think we’ve pretty much covered (at some level) Chapter 4 (differentiation), Chapter 5
(integration), and Chapter 6 (vector analysis) of Boas. It would have been nice to go
over Chapter 13 (PDE) in more detail, but I think with what we did do, there’s nothing
in Chapter 13 you can’t read easily. If you read a couple pages of Boas from time to time,
she’ll keep you sharp on your applied math, so it’s a good book to know about/have.


