Math 6702, Assignment 11

Mollification

Consider p; : R — R by

(z) o 6_1/(1_|x|2), ‘:1;| < 1
FIE =1 o, 2] > 1.

It can be shown that p; € C2°(R) with supp p; = [—1,1]. A plot of y; is shown in Figure 1.
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Figure 1: The Test Function .

1. (a) Use mathematical software to make your own plot of y;.

(b) Use uy to construct a function ps € C°(R) with
supp ps = [—9, 4] and /,u(; =1.

(c) Consider pus* f: R — R for f € L} (R) by

s * f(z) = /g e =6)

This is called the convolution (integral) of us and f. Show

ps * f(x) = f* ps(v) = f(©us(x = &), (1)

£eR

that is, convolution is commutative.
(d) Use (1) to show ps x f € C®(R).

(e) Determine the support of h = 5 * X[o,0c) and the support of h/. The particular
characteristic function H = x[o~) is called the Heaviside (step) function.

(f) Plot h using various values of § > 0 using mathematical software. If you're us-
ing Mathematica, the function Piecewise can be very useful for this. There’s
even a function Convolve that can be used, but I wasn’t able to get it to work
properly and had better luck simply using NIntegrate over the interval (=4, ).
One other Mathematica function (name) which might be useful to know /look up is
HeavisideTheta.

(g) Plot h by hand for general § > 0.



Weak Derivatives

2. Consider (once again) u € Wh'(a,b). This means u € L'(a,b) and u has a weak
derivative g € L'(a,b).

Take two points z; and x5 in (a,b). Assume 1 < z5. Let ps be a non-negative even C2°
function with support [—4,d] and [ ps = 1 discussed in the previous problem. Consider
the function ¢ € C2°(R) obtained by integrating

(a)
(b)

()
(d)

()

¢'(x) = ps(x — 1) — ps(x — 12).
Let 1 = —1/2 and x5 = 1/2. Use numerical software to plot the graph of ¢ and ¢'.
Show

(15 % (X[o1,00) — Xfwas00))](2) = /_x (15 (& — 1) — ps(§ — 22)] d€.

Plot ¢ and ¢’ by hand (for any z; < x3).

Using ¢ as a test function show
[ @l =) = st 2] = [ 915+ (o) = s
z€eR

Recall the following definition: A point xy € (a,b) is a Lebesgue point of u €
L'(a,b) if
1

im —
a\0 20 z€(xo—9,x0+9)

Given that x; and x5 are Lebesgue points of u and ¢ as described above, show

lu(z) — u(zo)| = 0.

lim | u¢’ =u(xy) —u(zy)  and lim | gp = / g.
6—0 6—0 (z1,x2)

Recall the Lebesgue lemma: Given any f € L'(a,b) and any € > 0, there is some

0 > 0 such that
A C (a,b) measurable } N / ] <e.
A

HA <o
Use this result to show u € C°(A) where
A ={x € (a,b) : x is a Lebesgue point for u}.

Conjecture If u € L'(a,b) is continuous on a set A C (a, b) with uA = b — a, then
there exists a continuous extension u € C°(a,b) with

u

u.

z€A

Were this conjecture correct, then since we know almost every point is a Lebesgue
point for an L' function, the preceeding parts of this problem would consitute a
proof that Wh(a,b) C C°(a,b) which, of course, is true. The conjecture, however,
is false. Give a counterexample.



Fundamental Solution

Consider (once again) the two point boundary value problem for the 1D Poisson equation:
—Au=—-u"=f
o ®
where this time f € C?|a, b].
3. (a) Show there exists an extension f € C%(R) of f. Hint: Because f € C?[a,b], there is
some § > 0 and an extension fy € C?*(a —,b+d). Mollify X(a—s/2,b+5/2) tO obtain a

function ¢ € C°(R) with ¢(z) = 1 for x € [a,b]. Multiply fy by ¢ when both are
defined. (There could, of course, be other extensions.)

(b) Let ug(z) = ® * f where ® = —|z|/2 is the fundamental solution for the operator
—Au = —u". Show ug € C*(R) and calculate —Auy = —uj. Hint:
—ul(z)=—Dx [ .

(c) Use uyg to solve (2) in the form u(z) = up(x) —w(z) where w”(0) = 0, w(a) = up(a),
and w(b) = ug(b).

Solution:

(a) Take fy as in the hint, and let ¢ = 1574 * X(a—5/2,b+5/2) -

o) = o(x)fo(z), =€ (a—35/4,b+36/4)
0, r ¢ (a—30/4,b+35/4).

(b)
~uj() =~ 7' (2)
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A Path Integral

4. Consider the curve

I' = {(cost,sint, t?/2) : t € [0,27]}.

/1

where f = f(x,y,2) = 2% + y? + 22. This may not be as easy as it looks at first.
Y )

Incidentally, this is sort of an interesting curve which is a variation on the theme of a
helix. Here is a plot for —27 — 0.5 <t < 27 4 0.5:
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Solution:

(a) () = (cost,sint,t?/2).

(b) 7/(t) = (—sint,cost,t), so 0 =1+ 12 = |7/(t)|.
(c) First of all

2 2 21
/f:/ (1+t2)\/1+t2dt:/ \/1+t2dt+/ V1 + 2 dt.
r 0 0 0




The first integral should have something to do with an inverse sinh, and the
second one should succumb to integration by parts:

21 2 1 2 t2
/ \/1+t2dt:/ dt+/ dt
0 0 0

V14 t2 V1+t2
2
= sinh ™' (27) + tV1 + t2‘% — V1+ 2 dt
t=0 0

2m
= sinh ™' (27) + 27V1 + 472 — / V1+t2dt.
0
Consequently,
2 1
/ V14t2dt = 3 sinh ™ (27) 4+ V1 + 472,
0

For the other one

2 2w
t 1
/ t2\/1+t2dt:§(1+t2)T£3 —5/ (14 %)% dt
0 0

t=0

2 1
= —(1 423/2——/.
Fan o f

Consequently,

~
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B sinh ™ (27) + /1 + 472 + ?ﬂ(l + 47r2)3/2}

—

COl — OOl | w

sinh~ (27) + 2 (3VI T 477 +2(1 + 4r2)"2)]

3sinh™ (27) + 27 (54 87%) VI + 477




Gradient Field §6.7-11 (Boas)

In Assignment 5 Problems 1-4 we considered the gradient PDEs in the plane.
5. A vector field v = (¢,7) on R? is a gradient field or exact or conservative if there
exists a potential function v : R? — R such that v = Du.

(a) Extend v to a field v : R®* — R3 by v(z,y,2) = (vi,ve,0). Interpret the condition
for v to be a gradient field from Assignment 5 Problem 4 in terms of the curl
operator applied to V.

(b) What is a natural domain and codomain for the curl operator?

(c) Give a counterexample to the following assertion: If v € C*(U) and curlv = 0 on
U then there exists a function u € C?(U) such that Du = v.

Vector Valued Functions
6. (6.4.6) If a charged particle moves in the plane with path given by r : R — {(z(¢), y(¢),0) :

t € R} according to Newton’s second law with F = ¢[v x (0,0, b)] with b constant, show
v =1 and F are perpendicular and both have constant magnitude.



