
Math 6702, Assignment 11

Mollification

Consider µ1 : R → R by

µ1(x) =

{

e−1/(1−|x|2), |x| < 1
0, |x| ≥ 1.

It can be shown that µ1 ∈ C∞
c (R) with suppµ1 = [−1, 1]. A plot of µ1 is shown in Figure 1.

Figure 1: The Test Function µ1.

1. (a) Use mathematical software to make your own plot of µ1.

(b) Use µ1 to construct a function µδ ∈ C∞
c (R) with

supp µδ = [−δ, δ] and

∫

µδ = 1.

(c) Consider µδ ∗ f : R → R for f ∈ L1
loc(R) by

µδ ∗ f(x) =

∫

ξ∈R

µδ(ξ)f(x− ξ).

This is called the convolution (integral) of µδ and f . Show

µδ ∗ f(x) = f ∗ µδ(x) =

∫

ξ∈R

f(ξ)µδ(x− ξ), (1)

that is, convolution is commutative.

(d) Use (1) to show µδ ∗ f ∈ C∞(R).

(e) Determine the support of h = µδ ∗ χ[0,∞) and the support of h′. The particular
characteristic function H = χ[0,∞) is called the Heaviside (step) function.

(f) Plot h using various values of δ > 0 using mathematical software. If you’re us-
ing Mathematica, the function Piecewise can be very useful for this. There’s
even a function Convolve that can be used, but I wasn’t able to get it to work
properly and had better luck simply using NIntegrate over the interval (−δ, δ).
One other Mathematica function (name) which might be useful to know/look up is
HeavisideTheta.

(g) Plot h by hand for general δ > 0.



Weak Derivatives

2. Consider (once again) u ∈ W 1,1(a, b). This means u ∈ L1(a, b) and u has a weak
derivative g ∈ L1(a, b).

Take two points x1 and x2 in (a, b). Assume x1 < x2. Let µδ be a non-negative even C∞
c

function with support [−δ, δ] and
∫

µδ = 1 discussed in the previous problem. Consider
the function φ ∈ C∞

c (R) obtained by integrating

φ′(x) = µδ(x− x1) − µδ(x− x2).

(a) Let x1 = −1/2 and x2 = 1/2. Use numerical software to plot the graph of φ and φ′.

(b) Show

[µδ ∗ (χ[x1,∞) − χ[x2,∞))](x) =

∫ x

−∞

[µδ(ξ − x1) − µδ(ξ − x2)] dξ.

(c) Plot φ and φ′ by hand (for any x1 < x2).

(d) Using φ as a test function show

−
∫

x∈R

u(x)[µδ(x− x1) − µδ(x− x2)] =

∫

gµδ ∗ (χ[x1,∞) − χ[x2,∞)).

(e) Recall the following definition: A point x0 ∈ (a, b) is a Lebesgue point of u ∈
L1(a, b) if

lim
δց0

1

2δ

∫

x∈(x0−δ,x0+δ)

|u(x) − u(x0)| = 0.

Given that x1 and x2 are Lebesgue points of u and φ as described above, show

lim
δ→0

∫

uφ′ = u(x1) − u(x2) and lim
δ→0

∫

gφ =

∫

(x1,x2)

g.

(f) Recall the Lebesgue lemma: Given any f ∈ L1(a, b) and any ǫ > 0, there is some
δ > 0 such that

A ⊂ (a, b) measurable
µA < δ

}

=⇒
∫

A

|f | < ǫ.

Use this result to show u ∈ C0(A) where

A = {x ∈ (a, b) : x is a Lebesgue point for u}.

(g) Conjecture If u ∈ L1(a, b) is continuous on a set A ⊂ (a, b) with µA = b− a, then
there exists a continuous extension u ∈ C0(a, b) with

u∣
∣

x∈A

≡ u.

Were this conjecture correct, then since we know almost every point is a Lebesgue
point for an L1 function, the preceeding parts of this problem would consitute a
proof that W 1,1(a, b) ⊂ C0(a, b) which, of course, is true. The conjecture, however,
is false. Give a counterexample.



Fundamental Solution

Consider (once again) the two point boundary value problem for the 1D Poisson equation:
{

−∆u = −u′′ = f
u(a) = a(b)

(2)

where this time f ∈ C2[a, b].

3. (a) Show there exists an extension f ∈ C2
c (R) of f . Hint: Because f ∈ C2[a, b], there is

some δ > 0 and an extension f0 ∈ C2(a− δ, b+ δ). Mollify χ(a−δ/2,b+δ/2) to obtain a
function φ ∈ C∞

c (R) with φ(x) ≡ 1 for x ∈ [a, b]. Multiply f0 by φ when both are
defined. (There could, of course, be other extensions.)

(b) Let u0(x) = Φ ∗ f where Φ = −|x|/2 is the fundamental solution for the operator
−∆u = −u′′. Show u0 ∈ C2(R) and calculate −∆u0 = −u′′0. Hint:

−u′′0(x) = −Φ ∗ f ′′
.

(c) Use u0 to solve (2) in the form u(x) = u0(x)−w(x) where w′′(0) = 0, w(a) = u0(a),
and w(b) = u0(b).

Solution:

(a) Take f0 as in the hint, and let φ = µδ/4 ∗ χ(a−δ/2,b+δ/2).

f̄(x) =

{

φ(x)f0(x), x ∈ (a− 3δ/4, b+ 3δ/4)
0, x /∈ (a− 3δ/4, b+ 3δ/4).

(b)

−u′′0(x) = −Φ ∗ f ′′
(x)

= −
∫

ξ∈R

Φ(ξ) f
′′
(x− ξ)

=
1

2

∫

ξ∈R

|ξ| f ′′(x− ξ)

= −1

2

∫ 0

−∞

ξ f
′′
(x− ξ) dξ +

1

2

∫ ∞

0

ξ f
′′
(x− ξ) dξ

= −1

2

[

−ξf ′
(x− ξ)∣

∣

0

−∞

+

∫ 0

−∞

f
′
(x− ξ) dξ

]

+
1

2

[

−ξf ′
(x− ξ)∣

∣

∞

0

+

∫ ∞

0

f
′
(x− ξ) dξ

]

= −1

2

[

−f(x− ξ)∣
∣

0

−∞

]

+
1

2

[

−f (x− ξ)∣
∣

∞

0

]

=
1

2
f(x) +

1

2
f(x)

= f(x).



(c)

w(x) =
u0(b) − u0(a)

b− a
(x− a) + u0(a) =

u0(b) − u0(a)

b− a
x+

bu0(a) − au0(b)

b− a
.

A Path Integral

4. Consider the curve
Γ = {(cos t, sin t, t2/2) : t ∈ [0, 2π]}.

Compute
∫

Γ

f

where f = f(x, y, z) = x2 + y2 + 2z. This may not be as easy as it looks at first.
Incidentally, this is sort of an interesting curve which is a variation on the theme of a
helix. Here is a plot for −2π − 0.5 < t < 2π + 0.5:

Solution:

(a) γ(t) = (cos t, sin t, t2/2).

(b) γ′(t) = (− sin t, cos t, t), so σ =
√

1 + t2 = |γ′(t)|.

(c) First of all

∫

Γ

f =

∫ 2π

0

(1 + t2)
√

1 + t2 dt =

∫ 2π

0

√
1 + t2 dt+

∫ 2π

0

t2
√

1 + t2 dt.



The first integral should have something to do with an inverse sinh, and the
second one should succumb to integration by parts:

∫ 2π

0

√
1 + t2 dt =

∫ 2π

0

1√
1 + t2

dt+

∫ 2π

0

t2√
1 + t2

dt

= sinh−1(2π) + t
√

1 + t2∣
∣

2π

t=0

−
∫ 2π

0

√
1 + t2 dt

= sinh−1(2π) + 2π
√

1 + 4π2 −
∫ 2π

0

√
1 + t2 dt.

Consequently,

∫ 2π

0

√
1 + t2 dt =

1

2
sinh−1(2π) + π

√
1 + 4π2.

For the other one
∫ 2π

0

t2
√

1 + t2 dt =
t

3
(1 + t2)

3/2
∣

∣

2π

t=0

− 1

3

∫ 2π

0

(1 + t2)3/2 dt

=
2π

3
(1 + 4π2)3/2 − 1

3

∫

Γ

f.

Consequently,

∫

Γ

f =
3

4

[

1

2
sinh−1(2π) + π

√
1 + 4π2 +

2π

3
(1 + 4π2)3/2

]

=
1

8

[

3 sinh−1(2π) + 2π
(

3
√

1 + 4π2 + 2(1 + 4π2)3/2
)]

=
1

8

[

3 sinh−1(2π) + 2π
(

5 + 8π2
)
√

1 + 4π2
]

.



Gradient Field §6.7-11 (Boas)

In Assignment 5 Problems 1-4 we considered the gradient PDEs in the plane.

5. A vector field v = (φ, ψ) on R
2 is a gradient field or exact or conservative if there

exists a potential function u : R
2 → R such that v = Du.

(a) Extend v to a field v : R
3 → R

3 by v(x, y, z) = (v1, v2, 0). Interpret the condition
for v to be a gradient field from Assignment 5 Problem 4 in terms of the curl

operator applied to v.

(b) What is a natural domain and codomain for the curl operator?

(c) Give a counterexample to the following assertion: If v ∈ C1(U) and curlv ≡ 0 on
U then there exists a function u ∈ C2(U) such that Du = v.

Vector Valued Functions

6. (6.4.6) If a charged particle moves in the plane with path given by r : R → {(x(t), y(t), 0) :
t ∈ R} according to Newton’s second law with F = q[v× (0, 0, b)] with b constant, show
v = ṙ and F are perpendicular and both have constant magnitude.


