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Problem 1 (beyond Hooke’s constant) This is the fourth in a series of problems on
Hooke’s constant.

If you were able to formulate an alternative model for homogeneous deformations
of a spring in Part (d) of Problem 1 of Assignment 9, assume the spring is massless
but exerts tension/compression force uniformly along the homogeneous deformation
with the horizontal model and has free end attached to a (point) mass m that moves
without friction under the influence of this force, and

(a) Model the motion of the mass in terms of the horizontal extension w.

(b) Model the motion of the mass attached to one of the halves of the spring if you
cut it in half.

Problem 2 (beyond Hooke’s constant) Consider the massless spring of the previous
problem with a mass attached to the end, but hanging in a downward gravity field
and using the vertical model measurement function v = —u. Model the motion of
the mass.

Problem 3 (Boas Problem 5.2.33) An areal mass density is a non-negative real
valued function p : A — [0,00) on a domain A naturally admitting area measure.
The (model) mass of a set A defined to be

M:/p.
A



Notice the physical dimensions of an areal mass density are given by

] = 5

If A is the quarter disk
A={(zr,y) eR*:2* +y* <4, >0, y >0}

in the first quadrant and the mass density it taken to be p(x,y) = z+y, then calculate
the (model) mass.

Problem 4 (Boas Problem 5.2.36) Light impinging on a square mirror partially re-
flects off the surface of the mirror with some light passing through the glass of the
mirror. Assume the mirror surface is modeled by the region

C1(0,0) = {(zy,29) € R?: || <1, j=1,2} CR%

Assume the light incident on the mirror is modeled by an intensity density [ :
C41(0,0) — [0, 00) according to which
/ I
01(0,0)

models the total energy of the light impinging on the mirror, and the reflection of the
light is modeled by a fraction of reflection density a : C1(0,0) — R by

(22 — 931)2
4

R = / lo
C1(0,0)

models the total energy of light reflected. If I is constant, find the value of R.
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so that

Problem 5 (Boas Problem 5.2.40) Consider the iterated integrals

/// 2dydz d.



(i) Find the volume V so that these iterated integrals have value

/=

(ii) Express the value as five different iterated integrals.

(iii) Compute the value.
Problem 6 (Problem 5.2.49 in Boas) Calculate [;, 1 where
V={(r,y,2):0<z<1—-2>—y* O<my<az+y<l}

Problem 7 (Boas Problems 5.3.17-30) A linear mass density p : I' — [0,00) is
a non-negative function defined on a set/curve I' subject to length measure, so that
the (model) mass of I" is given by
M = / p-
r

If ' € R", the center of mass is defined to be the point X = (71, s, . .., T,) where

_ 1
Zl,’j: M/F.lejp

I'={(z,vx):0<x <2}

(a) Calculate the mass using the parameterization o(z) = (z, /) when p is constant.

Consider

(b) Find the length L of T".
(c) Parameterize I' by arclength.

(d) Calculate the mass using the arclength parameterization v : [0, L] — ' when

p(Ia \/5) = \/5

(e) Find the center of mass when p is constant.



Problem 8 (The rationals have zero measure.) Here are some (well-known) sets of
numbers:

N={1,2,3,...} (the natural numbers)
Z={0,£1,4£2,43,...} (the integers)

Q= {% :m E Z,n € N} (the rational numbers)

We have also been using the real numbers R, and it may now be pointed out that
R\Q is the set of irrational numbers.

Theorem 1 (the rationals are countable) There exists a sequence

{Qj}(;i1 = {Q17Q2,Q37 .- }

with
{q17 42,43, - - } = @

The set/sequence {qi, ¢2, g3, - . .} is called an enumeration of the rationals.

We will not prove Theorem 1, but you can take it as (a) given.

(a) Show that for any € > 0, there exist intervals [; = (q;—r;, ¢j+r;) forj =1,2,3,...

such that . .
D oull) =) (2r) <e

J=1
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(b) Conclude p(Q), the measure of the rationals, is zero. Hint(s): If A and B are
measurable sets and A C B, then p(A) < u(B), and if

A=\ A4,

J

s

<
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for some sequence of measurable sets A;, Ay, As, ... then

pA) <D p(4;).
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Problem 9 (sets of measure zero) Any subset A of R is said to have measure zero
if for any € > 0, there exists a countable collection of intervals I, I5, I3, . .. such that

AclJn  and D () <e
j=1 j=1

where the measure of an interval is its length.

(a) Show that any countable union

A - GAj
Jj=1

of sets A; each of which has measure zero also has measure zero: p(A) = 0.

(b) Is it true that an arbitrary union of sets of measure zero always has measure zero?

Problem 10 (More solutions of Laplace’s PDE) In Problems 8-10 of Assignment
8, you found a solution of Laplace’s equation Au = 0 on a rectangle U = (0, L) X
(0, M) C R? with homogeneous boundary conditions, i.e., u = 0 on three sides
of the rectangle. Consider the same PDE, Laplace’s equation
_ D%u N Pu
Cox2  Oy?
on the same rectangular domain U = (0, L) x (0, M) C R2.

Given xy > 0, let us say a function g : [0,29] — R is a compatible linear
combination if g is given by

Au 0

for some (finitely many) coefficients aq, as, ..., a; and some (finitely many) natural
numbers ny, na, ..., Ng.

Let go and g; be compatible linear combinations on the interval [0, L], and let
ho and hy be compatible linear combinations on the interval [0, M]. Find a solution
u € C*([0, L] x [0, M]) of the boundary value problem

Au =0, (x,y) € (0,L) x (0, M)
u(z,0) = go(z), x€][0,L]
uw(x, M) = gi(x), z€][0,L]
u(0,y) = ho(y), y € [0, M]
u(L,y) =hi(y), ye(0,M]



for Laplace’s equation. Hint(s): The partial differential equation is linear meaning
that linear combinations of solutions are solutions:

If Au= Av =0, then A(au + bv) = 0.

Consider boundary problems like

Aw =0, (x,y) € (0, L) x (0, M)
w(z,0) =0, x € |0, L]
w(z, M) =0, z€l0,1L]
w(0,y) = wo(y), y € [0, M]
w(L,y) =0, y € [0, M]

with three homogeneous boundary conditions.



