Lecture 1: Ordinary Differential Equations and The Calculus of Variations Assignment Problems Due Monday February 8, 2021

John McCuan

February 5, 2021

Problem 1 (Boas 8.6.1) Find the general solution of $y'' - 4y = 10$. Solve the IVP

$$
\begin{cases} y'' - 4y = 10 \\ y(1) = -3, \ y'(1) = -2. \end{cases}
$$

Use mathematical software to find a numerical approximation of the solution of the IVP. (Also plot your solution to see the two match.)

Problem 2 (Boas 8.6.28) Consider the following ordinary differential operators on complex valued functions of a real variable:

$$
\frac{d}{dt}: C^{\infty}(\mathbb{R} \to \mathbb{C}) \to C^{\infty}(\mathbb{R} \to \mathbb{C}) \quad \text{by} \quad \frac{d}{dt}u = u'
$$

and

$$
id: C^{\infty}(\mathbb{R} \to \mathbb{C}) \to C^{\infty}(\mathbb{R} \to \mathbb{C}) \qquad \text{by} \qquad id \, u = u.
$$

(a) Expand the linear constant coefficient operator

$$
L: C^{\infty}(\mathbb{R} \to \mathbb{C}) \to C^{\infty}(\mathbb{R} \to \mathbb{C}) \qquad \text{by} \qquad Lu = \left(\frac{d}{dt} - a \,\text{id}\right) \left(\frac{d}{dt} - b \,\text{id}\right) u
$$

where a and b are complex numbers to obtain an expression of the form $Lu =$ $u'' + pu' + qu$ for complex numbers p and q.

- (b) Find the general solution of $Lu = ke^{ct}$ where k and c are complex numbers by solving $y' - ay = ke^{ct}$ first and then solving $u' - bu = y$ (as linear first order ODEs) in the three cases:
	- (i) $c \neq a$ and $c \neq b$.
	- (ii) $a \neq b$ and $c = a$.
	- (iii) $a = b = c$.

Problem 3 (Boas 8.7.5) The shape of a hanging chain is modeled by solutions of

$$
(y'')^2 = k^2[1 + (y')^2].
$$

Find the general solution of this (nonlinear) ODE.

Problem 4 (Boas 8.7.6) The signed curvature of the graph of a function $u \in$ $C^2[a, b]$ at the point $(x, u(x))$ is defined to be the derivative

$$
k = \frac{d\psi}{ds}
$$

with respect to arclength

$$
s = \int_a^x \sqrt{1 + [u'(\xi)]^2} \, d\xi
$$

of the inclination angle ψ defined by

$$
(\cos \psi, \sin \psi) = \left(\frac{1}{\sqrt{1 + [u'(x)]^2}}, \frac{u'(x)}{\sqrt{1 + [u'(x)]^2}}\right).
$$

(a) Find the curvature of the graph of $u(x) = \sqrt{r^2 - x^2}$ for $|x| < r$.

- (b) Find the curvature of the graph of $u(x) = -\sqrt{r^2 x^2}$ for $|x| < r$.
- (c) Show the curvature is given in general by

$$
k = \frac{u''}{(1 + [u'(x)]^2)^{3/2}}.
$$

(d) Solve the ODE

$$
\frac{u''}{(1+[u'(x)]^2)^{3/2}} = c
$$

where c is a (real) constant.

Problem 5 (Boas 9.1.2) Assume $A = (0, h)$ is a point on the positive y-axis (with $h > 0$) and $B = (x_0, y_0)$ is a point in the fourth quadrant with $x_0 \geq 0$ and $y_0 < 0$. Let c denote the speed of light and assume a "light particle" takes a straight line path from A to a point $p = (x, 0)$ on the x-axis moving with speed c/n_1 and the same particle continues taking a straight line path from p to B moving with speed c/n_2 .

- (a) Compute the total time for this particle to travel from A to B as a function of x.
- (b) Find the point p on the x-axis for which the travel time from A to B is the minumum possible.
- (c) Use your result to verify Snell's law of refraction:

$$
n_1 \sin \theta_1 = n_2 \sin \theta_2
$$

where θ_1 is the angle of incidence and θ_2 is the angle of refraction.

Problem 6 (Boas 9.1.1,3) The figure below shows the ellipse $x^2/2 + y^2 = 1$ with semi-axes of lengths $\sqrt{2}$ and 1 and focal points ($\pm 1, 0$). Also shown are the inscribed circle $x^2 + y^2 = 1$ and the tangent line $y = -1$ at $(0, -1)$. Each of these three curves may be considered as the top view of a reflecting wall, and a light ray emitted from $(-1,0)$ is shown reflecting off each of these walls at $(-1,0)$ and subsequently reaching $(1, 0)$. The angle of reflection is equal to the angle of incidence for this path in accordance with Hero's law of reflection.

(a) Assume a ray of light travels with speed c/n (where c is the speed of light in a vacuum and $n > 1$ is a constant). Consider all paths along which light may

travel from the point $(-1, 0)$ along a straight line to a point $p = (x, -1)$ and then travel along a straight line from p to $(1, 0)$. We can say such a path models the light "bouncing" off the line at p. Show the path bouncing at $(0, -1)$ is the path of least travel time among all paths that model light bouncing off the flat wall $y = -1$ at points $p = (x, -1)$.

- (b) Show all piecewise straight line paths starting at $(-1,0)$ and reflecting off the ellipse $x^2/2 + y^2 = 1$ at points $p = (x, y)$ and going (straight) to $(1, 0)$ have the same travel time and the same angles of incidence and reflection.
- (c) Show all unions of two straight line segments with the first connecting $(-1, 0)$ to a point p on the circle and the second connecting p to $(1,0)$ have travel times strictly less than the actual path (of reflection through $(0, -1)$) unless $p = (0, \pm 1).$

Problem 7 (*Boas* §9.2) Let $u \in C^1[a, b]$.

(a) Given a partition $\mathcal{P} = \{a = x_0 < x_1 < x_2 < \cdots < x_k = b\}$ Consider the (Riemann) sum

$$
\sum_{j=1}^{k} \sqrt{[x_j - x_{j-1}]^2 + [u(x_j) - u(x_{j-1})]^2}.
$$

Draw a picture showing the geometric meaning of this sum, and use the mean value theorem to write this sum as a Riemann sum in the form

$$
\sum_{j=1}^{k} F(u'(x_j^*)) (x_j - x_{j-1})
$$

for some evaluation points $x_1^*, x_2^*, \ldots, x_k^*$.

(b) Take the limit

$$
\lim_{\|\mathcal{P}\| \to 0} \sum_{j=1}^{k} \sqrt{[x_j - x_{j-1}]^2 + [u(x_j) - u(x_{j-1})]^2}
$$

where $\|\mathcal{P}\| = \max_j (x_j - x_{j-1})$ to obtain a functional $\mathcal{L}: C^1[a, b] \to \mathbb{R}$ of the form

$$
\mathcal{L}[u] = \int_a^b F(u'(x)) dx.
$$

(c) Consider

$$
M = \{ w \in C^1[a, b] : \mathcal{L}[w] \le \mathcal{L}[u] \quad \text{for all } u \in C^1[a, b] \}.
$$

Characterize the set M . Prove your assertion and determine if M is a vector subspace of $C^1[a, b]$. M is called the set of minimizers for \mathcal{L} .

(d) Consider $A = \{u \in C^1[a, b] : u(a) = 0 \text{ and } u(b) = 1\}$. Find the set of minimizers of the restriction of $\mathcal L$ to $\mathcal A$. Can you prove your assertion?

Problem 8 Let **p** and **q** be two distinct points fixed in the plane \mathbb{R}^2 . The set of C^1 paths connecting p to q is

$$
\mathcal{A} = \{ \gamma \in C^1([0,1] \to \mathbb{R}^2) : \gamma(0) = \mathbf{p} \text{ and } \gamma(1) = \mathbf{q} \}.
$$

- (a) Find all circular arcs of a fixed radius in A.
- (b) Write down a functional $\mathcal{L} : \mathcal{A} \to \mathbb{R}$ for which $\mathcal{L}[\gamma]$ is the length of the path γ .
- (c) Compute the first variation of \mathcal{L} . (Hint: It may be helpful to write down an appropriate set V of admissible perterbations for this problem.)

Problem 9 Let $L > |\mathbf{q} - \mathbf{p}|$ where $\mathbf{p} = (a, y_1)$ and $\mathbf{q} = (b, y_2)$ are fixed points in the plane \mathbb{R}^2 with $a < b$. A chain lies in the plane taking a certain shape modeled by the graph of a function $u \in C^1[a, b]$ with $u(a) = y_1$ and $u(b) = y_2$.

(a) Imagine the chain consists of "links" modeled by

$$
L_j = \{(x, u(x)) : x_{j-1} \le x \le x_j\} \qquad \text{for } j = 1, 2, \dots, k \tag{1}
$$

where $\mathcal{P} = \{a = x_0 < x_1 < x_2 < \cdots < x_k = b\}$ is a partition of [a, b]. Imagine further that the chain is constructed by moving each link L_i vertically from the position

$$
\{(x, u(x) - u(x_j)) : x_{j-1} \le x \le x_j\}
$$

to the position (1) through a downward gravitational potential field $-q(0,1)$. Write down a Riemann sum giving the total work (i.e., energy) required to construct the chain in this way. Hint: Assume a uniform linear density ρ along the chain so that any length ℓ of this (kind of) chain has mass $\rho\ell$.

- (b) Take a limit of your approximate potential energy/Riemann sum to obtain a potential energy function $\mathcal{E}: A \to \mathbb{R}$ assigning a potential energy to each model chain shape. Hint: Writing down the definition of the admissible class A which is the domain of $\mathcal E$ is part of the problem.
- (c) Show $\mathcal E$ is not bounded below on $\mathcal A$.
- (d) Introduce an appropriate constraint within the admissible class A according to which there is some hope to minimize \mathcal{E} . Hint: Look at the very first hypothesis in the statement of this problem, and then use Problem 7 above. Your answer may be given in terms of an appropriate subset A_L of A determined by the constraint.

Note: You should not expect to be able to carry out the mathematical details of minimizing $\mathcal E$ on $\mathcal A$ subject to the constraint you gave in part (d), but you should have a strong physical intuition that a minimizer for this constrained problem should exist. Soon you should be able to find it.

Problem 10 The previous problem involved minimizing a real valued function(al) subject to a constraint. Here is a finite dimensional version of this kind of problem: Minimize the value of $u(x, y) = x^2 + y^2$ on \mathbb{R}^2 subject to the constraint $x^2/2 + y^2 = 1$. See Boas §4.9 and §9.6.