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Problem 1 (Boas 8.6.1) Find the general solution of y′′ − 4y = 10. Solve the IVP
{

y′′ − 4y = 10
y(1) = −3, y′(1) = −2.

Use mathematical software to find a numerical approximation of the solution of the
IVP. (Also plot your solution to see the two match.)

Problem 2 (Boas 8.6.28) Consider the following ordinary differential operators on
complex valued functions of a real variable:

d

dt
: C∞(R → C) → C∞(R → C) by

d

dt
u = u′

and
id : C∞(R → C) → C∞(R → C) by id u = u.

(a) Expand the linear constant coefficient operator

L : C∞(R → C) → C∞(R → C) by Lu =

(

d

dt
− a id

)(

d

dt
− b id

)

u

where a and b are complex numbers to obtain an expression of the form Lu =
u′′ + pu′ + qu for complex numbers p and q.
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(b) Find the general solution of Lu = kect where k and c are complex numbers by
solving y′ − ay = kect first and then solving u′ − bu = y (as linear first order
ODEs) in the three cases:

(i) c 6= a and c 6= b.

(ii) a 6= b and c = a.

(iii) a = b = c.

Problem 3 (Boas 8.7.5) The shape of a hanging chain is modeled by solutions of

(y′′)2 = k2[1 + (y′)2].

Find the general solution of this (nonlinear) ODE.

Problem 4 (Boas 8.7.6) The signed curvature of the graph of a function u ∈
C2[a, b] at the point (x, u(x)) is defined to be the derivative

k =
dψ

ds

with respect to arclength

s =

∫ x

a

√

1 + [u′(ξ)]2 dξ

of the inclination angle ψ defined by

(cosψ, sinψ) =

(

1
√

1 + [u′(x)]2
,

u′(x)
√

1 + [u′(x)]2

)

.

(a) Find the curvature of the graph of u(x) =
√
r2 − x2 for |x| < r.

(b) Find the curvature of the graph of u(x) = −
√
r2 − x2 for |x| < r.

(c) Show the curvature is given in general by

k =
u′′

(1 + [u′(x)]2)3/2
.

(d) Solve the ODE
u′′

(1 + [u′(x)]2)3/2
= c

where c is a (real) constant.
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Problem 5 (Boas 9.1.2) Assume A = (0, h) is a point on the positive y-axis (with
h > 0) and B = (x0, y0) is a point in the fourth quadrant with x0 ≥ 0 and y0 < 0. Let
c denote the speed of light and assume a “light particle” takes a straight line path from
A to a point p = (x, 0) on the x-axis moving with speed c/n1 and the same particle
continues taking a straight line path from p to B moving with speed c/n2.

(a) Compute the total time for this particle to travel from A to B as a function of x.

(b) Find the point p on the x-axis for which the travel time from A to B is the
minumum possible.

(c) Use your result to verify Snell’s law of refraction:

n1 sin θ1 = n2 sin θ2

where θ1 is the angle of incidence and θ2 is the angle of refraction.

Problem 6 (Boas 9.1.1,3) The figure below shows the ellipse x2/2 + y2 = 1 with
semi-axes of lengths

√
2 and 1 and focal points (±1, 0). Also shown are the inscribed

circle x2 + y2 = 1 and the tangent line y = −1 at (0,−1). Each of these three
curves may be considered as the top view of a reflecting wall, and a light ray emitted
from (−1, 0) is shown reflecting off each of these walls at (−1, 0) and subsequently
reaching (1, 0). The angle of reflection is equal to the angle of incidence for this path
in accordance with Hero’s law of reflection.

(a) Assume a ray of light travels with speed c/n (where c is the speed of light in a
vacuum and n > 1 is a constant). Consider all paths along which light may
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travel from the point (−1, 0) along a straight line to a point p = (x,−1) and
then travel along a straight line from p to (1, 0). We can say such a path models
the light “bouncing” off the line at p. Show the path bouncing at (0,−1) is the
path of least travel time among all paths that model light bouncing off the flat
wall y = −1 at points p = (x,−1).

(b) Show all piecewise straight line paths starting at (−1, 0) and reflecting off the
ellipse x2/2 + y2 = 1 at points p = (x, y) and going (straight) to (1, 0) have the
same travel time and the same angles of incidence and reflection.

(c) Show all unions of two straight line segments with the first connecting (−1, 0)
to a point p on the circle and the second connecting p to (1, 0) have travel
times strictly less than the actual path (of reflection through (0,−1)) unless
p = (0,±1).

Problem 7 (Boas §9.2) Let u ∈ C1[a, b].

(a) Given a partition P = {a = x0 < x1 < x2 < · · · < xk = b} Consider the
(Riemann) sum

k
∑

j=1

√

[xj − xj−1]2 + [u(xj)− u(xj−1)]2.

Draw a picture showing the geometric meaning of this sum, and use the mean
value theorem to write this sum as a Riemann sum in the form

k
∑

j=1

F (u′(x∗j )) (xj − xj−1)

for some evaluation points x∗
1
, x∗

2
, . . . , x∗k.

(b) Take the limit

lim
‖P‖→0

k
∑

j=1

√

[xj − xj−1]2 + [u(xj)− u(xj−1)]2

where ‖P‖ = maxj(xj − xj−1) to obtain a functional L : C1[a, b] → R of the
form

L[u] =
∫ b

a

F (u′(x)) dx.
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(c) Consider

M = {w ∈ C1[a, b] : L[w] ≤ L[u] for all u ∈ C1[a, b]}.

Characterize the set M . Prove your assertion and determine if M is a vector
subspace of C1[a, b]. M is called the set of minimizers for L.

(d) Consider A = {u ∈ C1[a, b] : u(a) = 0 and u(b) = 1}. Find the set of minimizers
of the restriction of L to A. Can you prove your assertion?

Problem 8 Let p and q be two distinct points fixed in the plane R2. The set of C1

paths connecting p to q is

A = {γ ∈ C1([0, 1] → R
2) : γ(0) = p and γ(1) = q}.

(a) Find all circular arcs of a fixed radius in A.

(b) Write down a functional L : A → R for which L[γ] is the length of the path γ.

(c) Compute the first variation of L. (Hint: It may be helpful to write down an
appropriate set V of admissible perterbations for this problem.)

Problem 9 Let L > |q− p| where p = (a, y1) and q = (b, y2) are fixed points in the
plane R2 with a < b. A chain lies in the plane taking a certain shape modeled by the
graph of a function u ∈ C1[a, b] with u(a) = y1 and u(b) = y2.

(a) Imagine the chain consists of “links” modeled by

Lj = {(x, u(x)) : xj−1 ≤ x ≤ xj} for j = 1, 2, . . . , k (1)

where P = {a = x0 < x1 < x2 < · · · < xk = b} is a partition of [a, b]. Imagine
further that the chain is constructed by moving each link Lj vertically from the
position

{(x, u(x)− u(xj)) : xj−1 ≤ x ≤ xj}
to the position (1) through a downward gravitational potential field −g(0, 1).
Write down a Riemann sum giving the total work (i.e., energy) required to
construct the chain in this way. Hint: Assume a uniform linear density ρ along
the chain so that any length ℓ of this (kind of) chain has mass ρℓ.
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(b) Take a limit of your approximate potential energy/Riemann sum to obtain a
potential energy function E : A → R assigning a potential energy to each model
chain shape. Hint: Writing down the definition of the admissible class A which
is the domain of E is part of the problem.

(c) Show E is not bounded below on A.

(d) Introduce an appropriate constraint within the admissible class A according to
which there is some hope to minimize E . Hint: Look at the very first hypothesis
in the statement of this problem, and then use Problem 7 above. Your answer
may be given in terms of an appropriate subset AL of A determined by the
constraint.

Note: You should not expect to be able to carry out the mathematical details of mini-
mizing E on A subject to the constraint you gave in part (d), but you should have a
strong physical intuition that a minimizer for this constrained problem should exist.
Soon you should be able to find it.

Problem 10 The previous problem involved minimizing a real valued function(al)
subject to a constraint. Here is a finite dimensional version of this kind of problem:
Minimize the value of u(x, y) = x2+ y2 on R2 subject to the constraint x2/2+ y2 = 1.
See Boas §4.9 and §9.6.
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