The Mollifier Theorem

Definition of the Mollifier
The function

-1 .
Kexp( ) if X< 1
T(X) = 1- X

0 it x| >1

, X e R"

where the constant K is chosen such that IRH T(x)dx = 1, is atest function on R". Note

that T(x) vanishes, together with all its derivatives as |x| - 17, so T(x) is infinitely
differentiable and has compact support. The graph of T(x) is sketched in the following
figure.
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The Mollifier Function
Forn=1and ¢> 0, let

s = +7(X) and P.(x) = T(X).
Then

S(x)>0 and Pe(x) > 0 for all x

Sx)=0 and Pe(x) =0 for [x] > ¢

IRSS(x)dx:l Ve >0, S,(0) -+ as & - 0,
[,P:()dx >0 as £-0, P.0)=Kle Ve > 0,

Evidently, S;(x) becomes thinner and higher as ¢ tends to zero but the area under the
graph is constantly equal to one. On the other hand, P.(x) has constant height but grows
thinner as ¢ tends to zero. These test functions can be used as the "seeds” from which an
infinite variety of other test functions can be constructed by using a technique called
regularization which we will now describe.

Forn > 1 we have

S0 = ET(¥) and P.(x) = T(X).



For U a bounded open set in R", and for u € L} (U), define for any ¢ > 0 and any x € U,
= {x e U : dist(x,0U) > €},

Jux) = [, SE=y)uy)dy (L1a)
= [, S@u(x-2)dz (1.1b)
= [, i@ U~ e2)dz (L1c)

We refer to J:.u(x) as the mollified u(x). This mollified function, J.u(x), is a smoothed
version of the original function, u(x).

Properties of the Mollifier

Note first that J.u(x) is infinitely differentiable; i.e., for any ¢ > O and any x € Ug, it is clear
from (1.1a) that

JU(X + €8) — JeU(X [S(X+ &6 —y) - S.(X-Y)]
(X+¢€ 8) ) _ .[|X,y|§8 X+e 8) ( ) u(y) dy
i.e.,
T+ e6) X e Ox SOV UY) Y @S~ 0.

Since S:(x) is infinitely differentiable, it follows that J.u(x) is infinitely differentiable on the
open set U..

It is evident from (1.1a) thatfor 1 < p < o, € >0, and X € Uy,
Ju) = [ S-S x-y)Pu(y) dy.
Then, using Holder’s inequality, we get
3u00P = ([, se-nay)" [ sx-yluyPdy
andsince [ S(x)dx=1 Ve>0,
[, BaupoPdx < [ I|x—y|§s S.(X—y)lu(y)[Pdydx
= [, [UP]  S(x=yydxdy = [ [u(y)Pdy

for open sets W= U, and V = W.. This result is just that assertion that

X-y<e

=ylse

13:ulle o) < NUll oy for VcocWcc U (1.2)
Next, use (1.1c) to write
Jeu(x) —u(x) = |

If the function u = u(x) is, in fact, continuous on U, then this last result shows that

S1(2) [u(X— €z) — u(z)] dz.

lzic1

m\_?x [PJeu(X) —u(X)| < m\_‘;ax |[fTu(x—¢€z) —u(z)]| - 0Oase - 0; (1.3)

i.e., J:u(x) converges uniformly to u(x) for x € V when u(x) is continuous on .U.
Foru e L} (U), W= U,, and arbitrary § > 0, use the fact that the continuous functions



are dense in Ly(W) to choose v € C(W) such that
lu—=Vvll_,w <.
Then for V = W,,
13U = ull vy < [19eu—= eVl vy + 1136V = VI, + IV = Ul v
< [lu= Vil owy + [13eV =Vl vy + IV =Ull owy < 26 + 13V = V]| v
It follows now from (1.3) that for u € L{.(U),
vV cc U, |deu—ull oy > 0 ase -0 (1.4)

We can summarize these results in the following,
Theorem (Local Approximation) Suppose U is open and bounded in R", 1 < p < o, and for
¢ > 0, let U, denote the subset {x € U : dist(x,0U) > ¢}.

(a) Forevery € > 0, ue LP.(U) implies Jcue C*(U,)

(b) (i) ue C(U) implies u, converges to u uniformly on compact subsets of U; i.e.,

[Jeu—Ullcw) = m\_?x PJeu(X) —u(x)] — 0 forallVcc U

(i) u; converges to uin L}, (U); i.e., u e L{.(U) implies that for all V cc W cc U,

” Jeu ” LP(V) = ” u ” LP(W) and ” Jeu—u ” LP(V) — Oase—0

(c) u; converges to uin \Aﬁg,’é(U);

Result (c) follows from (b) by induction.

Corollary (Global Approximation) Suppose U has a smooth boundary, and 1 < p < oo.

(&) Foreverye >0, u € LP(U) implies Jeu € C*(U) N LP(U).
(b) u e LP(U) implies that
” Jeu ” LP(U) = ” u ” LP(U) and ” Jeu—u ” LP(U) — Oase—0

(c) u e WKP(U) implies that there exists functions {¢m} € C*(U) N WKP(U) such that
¢m —ull, >0  asm- .

The proof of the corollary makes use of a partition of unity (see theorem 2 pg 251 in
Evans).

Weak Equals Strong
For U a bounded open set in R", we define v = v(x) to be the weak derivative of order a, of
u=ux), xe U if

ju u(x) 8¢ (x) dx = (=1)! ju v(x) p(x) dx for all ¢ € C2(U)



Similarly, we define v = v(X) to be the strong L, —derivative of order a, of
u=ux), xe U if

forany V cc U, there exists a sequence {¢n} € CZ(U) such that
[ J¢n—uPdx > 0 and [ |0%n—VPdx -0, as n - c.
Using mollifiers, we can show that these two notions are equivalent.

Suppose first that v = v(x) is the weak derivative of order a, of u = u(x). Then, since
S € C2(V),

U0 = [ S =y)uydy = CDF] | asS(x—y)uy)dy

Pyl x-ylse

= I ey SX-y)v(y)dy = J.v(X)  (by definition of weak derivative)
Now apply (1.4) to write
[ Weu—uPdx > 0 and | |69J.u—v|Pdx = [ |Jv—v|Pdx - 0, as n - co.
\Y \Y \Y
Thus every weak derivative is a strong L, —derivative.
Conversely, suppose v = Vv(X) is the strong L, —derivative of order a, of u = u(x) with
[ Jon—uPdx >0 and [ |6°¢n-VvPPdx >0, as n - o,
for arbitrary V cc U, and {¢n} € C¥(U). Then for any y € CZ(U),
jv(u — Pn) 0%y dx = jvua‘”y/dx— jvqﬁna"y/dx
_ a 1)\ ] a
= jvua wdx— (-1) jva dny dx
= [ uoydx— (-L)F [ vydx+ (1) [ (v—0“¢n) y dx
Then it follows that
[ uerwdx— (1) | vyax| < Ci[ Ipn - ulPdx+ Ca [ [0%¢n — vIPlx

which implies that every strong L, —derivative is a weak derivative.



Weyl's Lemma

Weyl's lemma is a famous result that asserts that for U a bounded open set in R", if

u = u(x) is harmonicin U, (i.e., u e C3(U) and V2u(x) = 0, x € U ) then u(x) is infinitely
differentiable in U.

To see why this result is true, recall that every harmonic function has the mean value
property. That is,

UY)BY) = i [ ) U ASO).

Vx e U, I <&, ux) = jaB ©

Then

U = [ Se=numdy = = [ T(FgE ) uy)dy

-ylse

- s_lnsz(%> jaBr(X) u(y) dS(y) dr = u(x) | ”ﬁ;n T(L) riar

U(X) [ o, S dy = UX).

But this says that Ve > 0, Vx € U,, J:u(x) = u(x). Since J:u(x) is infinitely differentiable on
U, it follows that u(x) is infinitely differentiable on U although u need not even be
continuous on the closure, U.



