
The Mollifier Theorem

Definition of the Mollifier
The function

Tx =
Kexp −1

1 − |x|2
 if |x| < 1

0 if |x| ≥ 1
, x ∈ Rn

where the constant K is chosen such that ∫
Rn

Txdx = 1, is a test function on Rn. Note
that Tx vanishes, together with all its derivatives as |x| → 1−, so Tx is infinitely
differentiable and has compact support. The graph of Tx is sketched in the following
figure.

The Mollifier Function
.For n = 1 and  > 0, let

Sx = 1
 T x

 and Pεx = T x
 .

Then
Sx ≥ 0 and Pεx ≥ 0 for all x

Sx = 0 and Pεx = 0 for |x| > 

∫
R

Sxdx = 1 ∀ > 0, S0 → +∞ as  → 0,

∫
R

Pxdx → 0 as  → 0, P0 = K/e ∀ > 0,

Evidently, Sx becomes thinner and higher as  tends to zero but the area under the
graph is constantly equal to one. On the other hand, Pεx has constant height but grows
thinner as  tends to zero. These test functions can be used as the ”seeds” from which an
infinite variety of other test functions can be constructed by using a technique called
regularization which we will now describe.

For n ≥ 1 we have

Sx = 1
n T x

 and Pεx = T x
 .
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For U a bounded open set in Rn, and for u ∈ Lloc
1 U, define for any  > 0 and any x ∈ U

= x ∈ U : distx,∂U > ,

Jux = ∫
|x−y|≤

Sx − yuydy 1.1a

= ∫
|z |≤

Szux − zdz 1.1b

= ∫
|z |≤1

S1zux − zdz. 1.1c

We refer to Jux as the mollified ux. This mollified function, Jux, is a smoothed
version of the original function, ux.

Properties of the Mollifier
Note first that Jux is infinitely differentiable; i.e., for any  > 0 and any x ∈ U, it is clear
from (1.1a) that

Jux + e⃗i − Jux
 = ∫

|x−y|≤

Sx + e⃗i − y − Sx − y
 uydy

i.e.,
Jux + e⃗i − Jux

 → ∫
|x−y|≤

∂xi Sx − yuydy as  → 0.

Since Sx is infinitely differentiable, it follows that Jux is infinitely differentiable on the
open set U.

It is evident from (1.1a) that for 1 ≤ p < ∞,  > 0, and x ∈ U,

Jux = ∫
|x−y|≤

Sx − y1−1/p Sx − y1/p uydy.

Then, using Holder’s inequality, we get

|Jux|p = ∫
|x−y|≤

Sx − ydy
p−1

∫
|x−y|≤

Sx − y| uy|p dy

and since ∫
R

Sxdx = 1 ∀ > 0,

∫
V

|Jux|pdx ≤ ∫
V
∫

|x−y|≤
Sx − y| uy|p dy dx

= ∫
W

| uy|p ∫
|x−y|≤

Sx − ydx dy = ∫
W

| uy|pdy

for open sets W = U, and V = W. This result is just that assertion that

||Ju||LpV ≤ ||u||LpW for V ⊂⊂ W ⊂⊂ U 1.2

Next, use (1.1c) to write

Jux − ux = ∫
|z |≤1

S1z ux − z − uz dz.

If the function u = ux is, in fact, continuous on U, then this last result shows that

max
V̄

|Jux − ux| ≤ max
V̄

| ux − z − uz | → 0 as  → 0; 1.3

i.e., Jux converges uniformly to ux for x ∈ V̄ when ux is continuous on .U.
For u ∈ Lloc

p U, W = U, and arbitrary δ > 0, use the fact that the continuous functions
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are dense in LpW to choose v ∈ CW such that

||u − v||LpW ≤ δ.

Then for V = W,

||Ju − u||LpV ≤ ||Ju − Jv||LpV + ||Jv − v||LpV + ||v − u||LpV

≤ ||u − v||LpW + ||Jv − v||LpV + ||v − u||LpW ≤ 2δ + ||Jv − v||LpV

It follows now from (1.3) that for u ∈ Lloc
p U ,

∀V ⊂⊂ U, ||Ju − u||LpV → 0 as  → 0 1.4

We can summarize these results in the following,

Theorem (Local Approximation) Suppose U is open and bounded in Rn, 1 ≤ p < ∞, and for
̇ > 0, let U denote the subset x ∈ U : distx,∂U > .

(a) For every ε > 0, u ∈ Lloc
p U implies Jεu ∈ C∞Uε

(b) (i) u ∈ CU implies u converges to u uniformly on compact subsets of U; i.e.,

‖Ju − u‖CV̄ = max
V̄

|Jεux − ux|  0 for all V ⊂⊂ U

(ii) u converges to u in Lloc
p U; i.e., u ∈ Lloc

p U implies that for all V ⊂⊂ W ⊂⊂ U,

Jεu LpV
≤ u

LpW
and Jεu − u

LpV
 0 as ε  0

(c) u converges to u in Wloc
k,pU;

Result (c) follows from (b) by induction.

Corollary (Global Approximation) Suppose U has a smooth boundary, and 1 ≤ p < ∞.

(a) For every ε > 0, u ∈ LpU implies Jεu ∈ C∞U ∩ LpU.

(b) u ∈ LpU implies that

Jεu LpU
≤ u

LpU
and Jεu − u

LpU
 0 as ε  0

(c) u ∈ Wk,pU implies that there exists functions φm ∈ C∞U ∩ Wk,pU such that

||φm − u||k,p → 0 as m → ∞.

The proof of the corollary makes use of a partition of unity (see theorem 2 pg 251 in
Evans).

Weak Equals Strong
For U a bounded open set in Rn, we define v = vx to be the weak derivative of order α, of
u = ux, x ∈ U if

∫
U

ux∂αφxdx = −1 |α | ∫
U

vxφxdx for all φ ∈ Cc
∞U
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Similarly, we define v = vx to be the strong Lp −derivative of order α, of
u = ux, x ∈ U if

for any V ⊂⊂ U, there exists a sequence φn ∈ Cc
∞U such that

∫
V
|φn − u|pdx → 0 and ∫

V
|∂αφn − v|pdx → 0, as n → ∞.

Using mollifiers, we can show that these two notions are equivalent.

Suppose first that v = vx is the weak derivative of order α, of u = ux. Then, since
S ∈ Cc

∞U,

∂αJux = ∫
|x−y|≤

∂x
αSx − yuydy = −1 |α | ∫

|x−y|≤
∂y
αSx − yuydy

= ∫
|x−y|≤

Sx − yvydy = Jvx (by definition of weak derivative)

Now apply 1.4 to write

∫
V
|Ju − u|pdx → 0 and ∫

V
|∂αJu − v|pdx = ∫

V
|Jv − v|pdx → 0, as n → ∞.

Thus every weak derivative is a strong Lp −derivative.

Conversely, suppose v = vx is the strong Lp −derivative of order α, of u = ux with

∫
V
|φn − u|pdx → 0 and ∫

V
|∂αφn − v|pdx → 0, as n → ∞,

for arbitrary V ⊂⊂ U, and φn ∈ Cc
∞U. Then for any ψ ∈ Cc

∞U,

∫
V
u − φn∂αψdx = ∫

V
u∂αψdx − ∫

V
φn ∂αψdx

= ∫
V

u∂αψdx − −1 |α | ∫
V
∂αφn ψdx

= ∫
V

u∂αψdx − −1 |α | ∫
V

vψdx + −1 |α | ∫
V
v − ∂αφnψdx

Then it follows that

∫
V

u∂αψdx − −1 |α | ∫
V

vψdx ≤ C1 ∫
V
|φn − u|pdx + C2 ∫

V
|∂αφn − v|pdx

which implies that every strong Lp −derivative is a weak derivative.
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Weyl’s Lemma
Weyl’s lemma is a famous result that asserts that for U a bounded open set in Rn, if
u = ux is harmonic in U, (i.e., u ∈ C2U and ∇2ux = 0, x ∈ U ) then ux is infinitely
differentiable in U.

To see why this result is true, recall that every harmonic function has the mean value
property. That is,

∀x ∈ U, r < , ux = ∫
∂Brx

uydŜy = 1
nrn−1An

∫
∂Brx

uydSy.

Then

Jux = ∫
|x−y|≤

Sx − yuydy = 1
n ∫

|x−y|≤
T

x − y
 uydy

= 1
n ∫

0


T r

 ∫
∂Brx

uydSy dr = ux ∫
0

 nAn

n T r
 rn−1dr

= ux ∫
B0

Sydy = ux.

But this says that ∀ > 0, ∀x ∈ U, Jux = ux. Since Jux is infinitely differentiable on
U, it follows that ux is infinitely differentiable on U although u need not even be
continuous on the closure, Ū.
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