The Mollifier Theorem

Definition of the Mollifier

The function

$$T(x) = \left\{ \begin{array}{ll} K \exp\left(\frac{-1}{1 - |x|^2}\right) & \text{if } |x| < 1 \\ 0 & \text{if } |x| \ge 1 \end{array} \right\}, \qquad x \in \mathbb{R}^n$$

where the constant K is chosen such that $\int_{R^n} T(x) dx = 1$, is a test function on R^n . Note that T(x) vanishes, together with all its derivatives as $|x| \to 1^-$, so T(x) is infinitely differentiable and has compact support. The graph of T(x) is sketched in the following figure.

The Mollifier Function

. For n = 1 and $\varepsilon > 0$, let

$$S_{\varepsilon}(x) = \frac{1}{\varepsilon} T(\frac{x}{\varepsilon})$$
 and $P_{\epsilon}(x) = T(\frac{x}{\varepsilon}).$

Then

$$\begin{split} S_{\varepsilon}(x) &\geq 0 & \text{and} & P_{\epsilon}(x) \geq 0 \quad \text{for all } x \\ S_{\varepsilon}(x) &= 0 & \text{and} & P_{\epsilon}(x) = 0 \quad \text{for } |x| > \varepsilon \\ \int_{R} S_{\varepsilon}(x) \, dx &= 1 & \forall \varepsilon > 0, \quad S_{\varepsilon}(0) \to +\infty \quad \text{as} \quad \varepsilon \to 0, \\ \int_{R} P_{\varepsilon}(x) \, dx \to 0 & \text{as} \quad \varepsilon \to 0, \quad P_{\varepsilon}(0) = K/e & \forall \varepsilon > 0, \end{split}$$

Evidently, $S_{\epsilon}(x)$ becomes thinner and higher as ϵ tends to zero but the area under the graph is constantly equal to one. On the other hand, $P_{\epsilon}(x)$ has constant height but grows thinner as ϵ tends to zero. These test functions can be used as the "seeds" from which an infinite variety of other test functions can be constructed by using a technique called regularization which we will now describe.

For $n \ge 1$ we have

$$S_{\varepsilon}(x) = \frac{1}{\varepsilon^n} T(\frac{x}{\varepsilon})$$
 and $P_{\epsilon}(x) = T(\frac{x}{\varepsilon}).$

For U a bounded open set in R^n , and for $u \in L^1_{loc}(U)$, define for any $\varepsilon > 0$ and any $x \in U_{\varepsilon} = \{x \in U : dist(x, \partial U) > \varepsilon\}$,

$$J_{\varepsilon}u(x) = \int_{|x-y| \le \varepsilon} S_{\varepsilon}(x-y) u(y) dy$$

$$= \int_{|z| \le \varepsilon} S_{\varepsilon}(z) u(x-z) dz$$

$$= \int_{|z| \le 1} S_{1}(z) u(x-\varepsilon z) dz.$$

$$(1.1a)$$

We refer to $J_{\varepsilon}u(x)$ as the **mollified** u(x). This mollified function, $J_{\varepsilon}u(x)$, is a smoothed version of the original function, u(x).

Properties of the Mollifier

Note first that $J_{\varepsilon}u(x)$ is infinitely differentiable; i.e., for any $\varepsilon > 0$ and any $x \in U_{\varepsilon}$, it is clear from (1.1a) that

$$\frac{J_{\varepsilon}u(x+\varepsilon\vec{e}_i)-J_{\varepsilon}u(x)}{\varepsilon}=\int_{|x-y|\leq \varepsilon}\frac{\left[S_{\varepsilon}(x+\varepsilon\vec{e}_i-y)-S_{\varepsilon}(x-y)\right]}{\varepsilon}\,u(y)\,dy$$

i.e.,

$$\frac{J_{\varepsilon}u(x+\varepsilon\vec{e}_i)-J_{\varepsilon}u(x)}{\varepsilon}\to\int_{|x-y|\leq\varepsilon}\partial_{x_i}S_{\varepsilon}(x-y)\,u(y)\,dy\qquad as\ \varepsilon\to0.$$

Since $S_{\varepsilon}(x)$ is infinitely differentiable, it follows that $J_{\varepsilon}u(x)$ is infinitely differentiable on the open set U_{ε} .

It is evident from (1.1a) that for $1 \le p < \infty$, $\varepsilon > 0$, and $x \in U_{\varepsilon}$,

$$J_{\varepsilon}u(x) = \int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y)^{1-1/p} S_{\varepsilon}(x-y)^{1/p} u(y) dy.$$

Then, using Holder's inequality, we get

$$|J_{\varepsilon}u(x)|^p = \left(\int_{|x-y|\leq \varepsilon} S_{\varepsilon}(x-y)\,dy\right)^{p-1} \int_{|x-y|\leq \varepsilon} S_{\varepsilon}(x-y)|\,u(y)|^p\,dy$$

and since $\int_{\mathbb{R}} S_{\varepsilon}(x) dx = 1$ $\forall \varepsilon > 0$,

$$\int_{V} |J_{\varepsilon}u(x)|^{p} dx \leq \int_{V} \int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y) |u(y)|^{p} dy dx$$

$$= \int_{W} |u(y)|^{p} \int_{|x-y| \leq \varepsilon} S_{\varepsilon}(x-y) dx dy = \int_{W} |u(y)|^{p} dy$$

for open sets $W = U_{\varepsilon}$, and $V = W_{\varepsilon}$. This result is just that assertion that

$$||J_{\varepsilon}u||_{L_p(V)} \le ||u||_{L_p(W)} \quad for \quad V \subset\subset W \subset\subset U$$
 (1.2)

Next, use (1.1c) to write

$$J_{\varepsilon}u(x)-u(x)=\int_{|z|\leq 1}S_1(z)\left[u(x-\varepsilon z)-u(z)\right]dz.$$

If the function u = u(x) is, in fact, continuous on U, then this last result shows that

$$\max_{\tilde{U}} |J_{\varepsilon}u(x) - u(x)| \le \max_{\tilde{U}} |[u(x - \varepsilon z) - u(z)]| \to 0 \text{ as } \varepsilon \to 0;$$
 (1.3)

i.e., $J_{\varepsilon}u(x)$ converges uniformly to u(x) for $x \in \overline{V}$ when u(x) is continuous on U. For $u \in L^p_{loc}(U)$, $W = U_{\varepsilon}$, and arbitrary $\delta > 0$, use the fact that the continuous functions are dense in $L_p(W)$ to choose $v \in C(W)$ such that

$$||u-v||_{L_p(W)} \leq \delta.$$

Then for $V = W_{\varepsilon}$,

$$||J_{\varepsilon}u - u||_{L_{p}(V)} \le ||J_{\varepsilon}u - J_{\varepsilon}v||_{L_{p}(V)} + ||J_{\varepsilon}v - v||_{L_{p}(V)} + ||v - u||_{L_{p}(V)}$$

$$\le ||u - v||_{L_{p}(W)} + ||J_{\varepsilon}v - v||_{L_{p}(V)} + ||v - u||_{L_{p}(W)} \le 2\delta + ||J_{\varepsilon}v - v||_{L_{p}(V)}$$

It follows now from (1.3) that for $u \in L^p_{loc}(U)$,

$$\forall V \subset\subset U, \qquad ||J_{\varepsilon}u - u||_{L^p(V)} \to 0 \quad as \ \varepsilon \to 0$$
 (1.4)

We can summarize these results in the following,

Theorem (Local Approximation) Suppose U is open and bounded in \mathbb{R}^n , $1 \leq p < \infty$, and for $\dot{\varepsilon} > 0$, let U_{ε} denote the subset $\{x \in U : dist(x, \partial U) > \varepsilon\}$.

- (a) For every $\epsilon > 0$, $u \in L^p_{loc}(U)$ implies $J_{\epsilon}u \in C^{\infty}(U_{\epsilon})$
- (b) (i) $u \in C(U)$ implies u_{ε} converges to u uniformly on compact subsets of U; i.e., $\|J_{\varepsilon}u u\|_{C(\bar{V})} = \max_{\bar{V}} |J_{\varepsilon}u(x) u(x)| \to 0 \text{ for all } V \subset\subset U$
 - (ii) u_{ε} converges to u in $L^p_{loc}(U)$; i.e., $u \in L^p_{loc}(U)$ implies that for all $V \subset\subset W \subset\subset U$, $\left\| J_{\epsilon}u \right\|_{L^p(V)} \leq \left\| u \right\|_{L^p(W)} \qquad \text{and} \qquad \left\| J_{\epsilon}u u \right\|_{L^p(V)} \to 0 \text{ as } \epsilon \to 0$
- (c) u_{ε} converges to u in $W_{loc}^{k,p}(U)$;

Result (c) follows from (b) by induction.

Corollary (Global Approximation) Suppose *U* has a smooth boundary, and $1 \le p < \infty$.

- (a) For every $\epsilon > 0$, $u \in L^p(U)$ implies $J_{\epsilon}u \in C^{\infty}(U) \cap L^p(U)$.
- (b) $u \in L^p(U)$ implies that

$$\parallel J_{\epsilon}u \parallel_{L^p(U)} \leq \parallel u \parallel_{L^p(U)}$$
 and $\parallel J_{\epsilon}u - u \parallel_{L^p(U)} \to 0 \text{ as } \epsilon \to 0$

(c) $u \in W^{k,p}(U)$ implies that there exists functions $\{\phi_m\} \in C^{\infty}(U) \cap W^{k,p}(U)$ such that $||\phi_m - u||_{k,p} \to 0 \qquad \text{as } m \to \infty.$

The proof of the corollary makes use of a partition of unity (see theorem 2 pg 251 in Evans).

Weak Equals Strong

For *U* a bounded open set in \mathbb{R}^n , we define v = v(x) to be the **weak derivative** of order α , of $u = u(x), x \in U$ if

$$\int_{U} u(x) \, \partial^{\alpha} \phi(x) \, dx = (-1)^{|\alpha|} \int_{U} v(x) \, \phi(x) \, dx \text{ for all } \phi \in C_{c}^{\infty}(U)$$

Similarly, we define v = v(x) to be the **strong** L_p -**derivative** of order α , of u = u(x), $x \in U$ if

for any $V \subset\subset U$, there exists a sequence $\{\phi_n\} \in C_c^\infty(U)$ such that

$$\int_{V} |\phi_{n} - u|^{p} dx \to 0 \quad and \quad \int_{V} |\partial^{\alpha} \phi_{n} - v|^{p} dx \to 0, \quad as \quad n \to \infty.$$

Using mollifiers, we can show that these two notions are equivalent.

Suppose first that v = v(x) is the weak derivative of order α , of u = u(x). Then, since $S_{\varepsilon} \in C_{\varepsilon}^{\infty}(U)$,

$$\begin{split} \partial^{\alpha}J_{\varepsilon}u(x) &= \int_{|x-y|\leq \varepsilon} \partial_{x}^{\alpha}S_{\varepsilon}(x-y)\,u(y)\,dy = (-1)^{|\alpha|} \int_{|x-y|\leq \varepsilon} \partial_{y}^{\alpha}S_{\varepsilon}(x-y)\,u(y)\,dy \\ &= \int_{|x-y|<\varepsilon} S_{\varepsilon}(x-y)\,v(y)\,dy = J_{\varepsilon}v(x) \end{split} \tag{by definition of weak derivative)}$$

Now apply (1.4) to write

$$\int_V |J_\varepsilon u - u|^p dx \to 0 \quad and \quad \int_V |\partial^\alpha J_\varepsilon u - v|^p dx = \int_V |J_\varepsilon v - v|^p dx \to 0, \quad as \quad n \to \infty.$$

Thus every weak derivative is a strong L_p –derivative.

Conversely, suppose v = v(x) is the strong L_p –derivative of order α , of u = u(x) with

$$\int_{V} |\phi_{n} - u|^{p} dx \to 0 \quad and \quad \int_{V} |\partial^{\alpha} \phi_{n} - v|^{p} dx \to 0, \quad as \quad n \to \infty,$$

for arbitrary $V \subset\subset U$, and $\{\phi_n\} \in C_c^{\infty}(U)$. Then for any $\psi \in C_c^{\infty}(U)$,

$$\int_{V} (u - \phi_{n}) \partial^{\alpha} \psi \, dx = \int_{V} u \partial^{\alpha} \psi \, dx - \int_{V} \phi_{n} \partial^{\alpha} \psi \, dx$$

$$= \int_{V} u \partial^{\alpha} \psi \, dx - (-1)^{|\alpha|} \int_{V} \partial^{\alpha} \phi_{n} \psi \, dx$$

$$= \int_{V} u \partial^{\alpha} \psi \, dx - (-1)^{|\alpha|} \int_{V} v \psi \, dx + (-1)^{|\alpha|} \int_{V} (v - \partial^{\alpha} \phi_{n}) \psi \, dx$$

Then it follows that

$$\left| \int_{V} u \, \partial^{\alpha} \psi \, dx - (-1)^{|\alpha|} \int_{V} v \, \psi \, dx \right| \leq C_{1} \int_{V} |\phi_{n} - u|^{p} dx + C_{2} \int_{V} |\partial^{\alpha} \phi_{n} - v|^{p} dx$$

which implies that every strong L_p –derivative is a weak derivative.

Weyl's Lemma

Weyl's lemma is a famous result that asserts that for U a bounded open set in \mathbb{R}^n , if u = u(x) is harmonic in U, (i.e., $u \in C^2(U)$ and $\nabla^2 u(x) = 0$, $x \in U$) then u(x) is infinitely differentiable in U.

To see why this result is true, recall that every harmonic function has the mean value property. That is,

$$\forall x \in U_{\varepsilon}, \ r < \varepsilon, \qquad u(x) = \int_{\partial B_r(x)} u(y) \, d\hat{S}(y) = \frac{1}{n r^{n-1} A_n} \int_{\partial B_r(x)} u(y) \, dS(y).$$

Then

$$J_{\varepsilon}u(x) = \int_{|x-y| \le \varepsilon} S_{\varepsilon}(x-y) u(y) dy = \frac{1}{\varepsilon^n} \int_{|x-y| \le \varepsilon} T\left(\frac{x-y}{\varepsilon}\right) u(y) dy$$

$$= \frac{1}{\varepsilon^n} \int_0^{\varepsilon} T\left(\frac{r}{\varepsilon}\right) \int_{\partial B_r(x)} u(y) dS(y) dr = u(x) \int_0^{\varepsilon} \frac{nA_n}{\varepsilon^n} T\left(\frac{r}{\varepsilon}\right) r^{n-1} dr$$

$$= u(x) \int_{B_{\varepsilon}(0)} S_{\varepsilon}(y) dy = u(x).$$

But this says that $\forall \varepsilon > 0$, $\forall x \in U_{\varepsilon}$, $J_{\varepsilon}u(x) = u(x)$. Since $J_{\varepsilon}u(x)$ is infinitely differentiable on U, it follows that u(x) is infinitely differentiable on U although u need not even be continuous on the closure, \bar{U} .