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1 The Classical Problem and Green’s Function

Here we consider the ODE

−u′′ = f (1D Poisson Equation)

and the boundary value problem
{

−u′′ = f on (0, L)
u(0) = u(L) = 0

(1)

where f is classically a continuous function on [a, b] but may have considerably relaxed
regularity in the discussion below and L > 0. We have observed that

G(x, ξ) =

{

(L − ξ)x/L, 0 ≤ x ≤ ξ
−ξ(x − L)/L, ξ ≤ x ≤ L

(2)

is, for each fixed ξ ∈ (0, L), a Lipschitz function with

u(x) =

∫ L

0

G(x, ξ)f(ξ) dξ

a classical solution of (1) when f ∈ C0[0, L].

2 The Definition of a Distributional Solution

We wish to examine the sense in which u(x) = G(x, ξ) is a solution of
{

“−u′′ = δξ” on (0, L)
u(0) = u(L) = 0

(3)
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Figure 1: The 1D Green’s function for the Laplace operator on the interval [0, L].

where δξ is the Dirac delta distribution at ξ, that is δξ : C∞
c (0, L) → R by

δξ[φ] = φ(ξ).

We interpret the PDE in (3) in two ways applicable to u(x) = G(x, ξ). The first way
is

−
∫ L

0

u(x)φ′′(x) dx = δξ[φ] = φ(ξ) for every φ ∈ C∞
c (0, L). (4)

The second equivalent way is

∫ L

0

u′(x)φ′(x) dx = δξ[φ] = φ(ξ) for every φ ∈ C∞
c (0, L) (5)

where u′ = Gx is a weak derivative of u. We have verified that G = G(x, ξ) has a
weak derivative given by

Gx(x, ξ) =

{

(L − ξ)/L, 0 ≤ x < ξ
−ξ/L, ξ < x ≤ L.

(6)

The value of Gx(x, ξ) is not specified at x = ξ, but Gx need only be defined as a
function in L1

loc, so this is no problem. Moreover, we have verified that u(x) = G(x, ξ)
satisfies both “distributional” formulations (4) and (5).

Exercise 1 Verify that Gx given by (6) is a weak derivative of G and that both (4)
and (5) are satisfied by u(x) = G(x, ξ).
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3 The Meaning of the Solution

We now seek to understand the meaning of these formulations in terms of approxima-
tion by (non-distributional) functions and weak solutions in particular. We observe
that

µ = µδ(x) =
1

2δ
χ[ξ−δ,ξ+δ](x) =

{

1/(2δ), |x − ξ| ≤ δ
0, |x − ξ| > δ

(7)

considered as a distribution M : C∞
c (0, L) → R by

M [φ] =

∫

µφ

satisfies
lim
δց0

M [φ] = δξ[φ] = φ(ξ) for all φ ∈ C∞
c (0, L).

Thus, M = Mδ approaches the Dirac delta distribution as the positive parameter δ
tends to 0. The graph of the function µ is illustrated in Figure 2.

Figure 2: Test functions with support in the interval [ξ − δ, ξ + δ] ⊂ [0, L]: The
characteristic function of height 1 and a smooth test function of max height 1 are
illustrated on the left. On the right these functions are normalized (i.e., scaled) to
have

∫

µ = 1. Note the figure on the right uses different scales for the axes; the height
of the smooth µ is about 8.286 with δ = 0.1.
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We propose to consider the approximating problem
{

−u′′ = µ on (0, L)
u(0) = u(L) = 0

(8)

with the expectation that the solution u = uδ approaches the Green’s function as
δ ց 0. This will illustrate the meaning of having a unit point source at ξ. Each of
the forcing functions µ = µδ is of unit magnitude in L1(0, L):

‖µ‖L1 =

∫

|µ| = 1.

This problem does not admit a classical solution, though the regularity does allow
a weak formulation of the problem (rather than a strictly distributional one). The
added regularity will be manifest in that the solution we find will be C1[0, L] in
contrast to the Green’s function which is only Lipschitz. Nevertheless, the classical
second derivative of u = uδ will not be defined at the two points x = ξ ± δ, so we
must turn to a weak formulation of (8). As in the case of the distributional problem
for the Green’s function, we can write down two equivalent (weak) formulations:

−
∫ L

0

u(x)φ′′(x) dx =

∫

(0,L)

µφ for every φ ∈ C∞
c (0, L). (9)

The second equivalent way is
∫ L

0

u′(x)φ′(x) dx =

∫

(0,L)

µφ. for every φ ∈ C∞
c (0, L) (10)

The second formulation assumes u has a weak derivative u′ ∈ L1
loc(0, L). Let us

postulate a piecewise classical solution of the form

u(x) =







c1x, 0 ≤ x ≤ ξ − δ
−(x − ξ)2/(4δ) + a(x − ξ) + b, ξ − δ ≤ x ≤ ξ + δ
c2(x − L), ξ + δ ≤ x ≤ L.

(11)

This function u will be continuous if u((ξ − δ)−) = c1(ξ − δ) = u((ξ − δ)+) and
u((ξ + δ)−) = u((ξ + δ)+). That is,

c1(ξ − δ) = −(−δ)2/(4δ) + a(−δ) + b, and

c2(ξ + δ − L) = −(δ)2/(4δ) + aδ + b,

or
{

4c1(ξ − δ) = 4b − 4δa − δ and
4c2(ξ + δ − L) = 4b + 4δa − δ.

(12)
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Exercise 2 Show that if (12) holds, then

u′(x) =







c1, 0 ≤ x < ξ − δ
−(x − ξ)/(2δ) + a, ξ − δ ≤ x ≤ ξ + δ
c2, ξ + δ ≤ x ≤ L

(13)

is a weak derivative of the function u = uδ given by (11).

In view of this result, we turn to the weak formulation of (10) according to which we
need

c1

∫ ξ−δ

0

φ′(x) dx +

∫ ξ+δ

ξ−δ

[

− 1

2δ
(x − ξ) + a

]

φ′(x) dx + c2

∫ L

ξ+δ

φ′(x) dx

=

∫ ξ+δ

ξ−δ

µ(x)φ(x) dx.

This simplifies to

c1φ(ξ − δ) − 1

2δ

∫ ξ+δ

ξ−δ

(x − ξ)φ′(x) dx + a [φ(ξ + δ) − φ(ξ − δ)] − c2φ(ξ + δ)

=
1

2δ

∫ ξ+δ

ξ−δ

φ(x) dx.

Notice that the right side is the average value of φ over the interval (ξ−δ, ξ+δ) which,
for a smooth function φ will tend to δξ[φ] = φ(ξ) as δ ց 0. This is an interesting
observation we will not need to use here, but it is worth being able to prove.

Exercise 3 Show that for any smooth function φ ∈ C∞
c (R) one has

lim
δց0

1

2δ

∫ ξ+δ

ξ−δ

φ(x) dx = φ(ξ).

Turning to the remaining integral on the left, we integrate by parts to find

∫ ξ+δ

ξ−δ

(x − ξ)φ′(x) dx = (x − ξ)φ(x)∣
∣

ξ+δ

ξ−δ

−
∫ ξ+δ

ξ−δ

φ(x) dx

= δφ(ξ + δ) + δφ(ξ − δ) −
∫ ξ+δ

ξ−δ

φ(x) dx.
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Substituting this calculation into the weak formulation above and simplifying, we find
the average values of φ cancel and the condition becomes

(

c1 − a − 1

2

)

φ(ξ − δ) =

(

c2 − a +
1

2

)

φ(ξ + δ).

Now we choose some specific test functions φ to obtain information from this condi-
tion. First we take φ ∈ C∞

c (ξ − 2δ, ξ) ⊂ C∞
c (0, L) with φ(ξ − δ) 6= 0. See Figure 3. It

Figure 3: Test functions with support centered at ξ − δ (left) and support centered
at ξ + δ (right).

follows from this choice that for u to be a weak solution of the ODE, we must have

c1 = a +
1

2
.

Taking a test function φ with support shifted right so that φ(ξ+δ) 6= 0 but φ(ξ−δ) =
0, we have also

c2 = a − 1

2
.

We may now substitute these values for c1 and c2 into the system (12) obtained from
the requirement that u ∈ C0[0, L]. This gives

{

4 (a + 1/2) (ξ − δ) = 4b − 4δa − δ
4 (a − 1/2) (ξ + δ − L) = 4b + 4δa − δ
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or
{

4ξa − 4b = δ − 2ξ
4(ξ − L)a − 4b = δ + 2ξ − 2L.

(14)

Thus, we see the only possible continuous solution of the form (11) has

a =
1

4L
(2L − 4ξ) =

L − 2ξ

2L
=

1

2
− ξ

L

b =
1

4

(

4ξ − 4

L
ξ2 − δ

)

= ξ − ξ2

L
− δ

4

c1 = 1 − ξ

L
=

L − ξ

L

c2 = − ξ

L
.

Thus, we have obtained a weak solution of the approximating boundary value problem
(8) given by

u(x) =







(L − ξ)x/L, 0 ≤ x ≤ ξ − δ

−(x − ξ)2/(4δ) + L−2ξ
2L

(x − ξ) − 4ξ2−4Lξ+δL
4L

, ξ − δ ≤ x ≤ ξ + δ
−ξ(x − L)/L, ξ + δ ≤ x ≤ L.

One notes at this point the striking comparison with the Green’s function (2); our
solution matches the Green’s function identically on the intervals [0, ξ−δ] and [ξ+δ, L].
The quadratic value of u = uδ on [ξ − δ, ξ + δ] may also be written as

− 1

4δ
x2 +

(

ξ

2δ
+

1

2
+

ξ

L

)

x − ξ2

4δ
− 1

2ξ
+ ξ − δ

4

though no special insight on this quadratic part seems to be gained from doing so.
From either expression it may be checked that u′((ξ − δ)+) = (L − ξ)/L and u′((ξ +
δ)−) = −ξ/L, so that u ∈ C1[0, L]. More generally,

u′(x) =







(L − ξ)/L, 0 ≤ x ≤ ξ − δ
−(x − ξ)/(2δ) + (L − 2ξ)/(2L), ξ − δ ≤ x ≤ ξ + δ
−ξ/L, ξ + δ ≤ x ≤ L.

Since a C1 function is clearly an H1 = W 1,2 function, we have found a weak solution
in H1(0, L). In fact, this solution satisfies the boundary conditions classically and it
can be fairly easily seen1 that u ∈ H1

0 (0, L).

1In fact, we will attempt to demonstrate this explicitly in connection with some other consider-

ations below.
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Exercise 4 Show that u = uδ /∈ W 2(0, L), i.e., u′ /∈ W 1
loc(0, L). Hint: u′ has a

classical derivative on [0, L]\{ξ ± δ}.

We know (or will soon prove) that such a solution is known to exist and, more
importantly for the present considerations, is unique. Thus, we have found the
unique weak solution in H1

0 (0, L) for this problem. In regard to regularity, the solution
we have found satisfies, in fact,

u = uδ ∈ ⊏
2[0, L]

where ⊏2[0, L] denotes the collection of piecewise C2 functions on [0, L].
Finally, it is abundantly clear, as suspected, that u = uδ tends to G(x, ξ) as δ

tends to zero. We have plotted u for some specific choices of the constants in Figure 4.
The convergence, for example, is clearly uniform on [0.L], from which it follows that

Figure 4: The weak C1 solution of (8).

uδ → G in Lp for every p. We cannot say uδ → G in H1 because G /∈ H1(0, L).

4 Comment on the Uniqueness

We have mentioned that the problem (8) has a unique weak solution in H1
0 (0, L).

Aside from the minor detail of showing u ∈ H1
0(0, L), which we will address below,

if one looks over the proof of existence and uniqueness for this problem using the
Riesz representation theorem, one notes that everything hinges (in some sense) on
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verification of a Poincaré inequality appropriate to the dimension under considera-
tion. I have given an argument for the case n = 2 of R

2 (the plane) elsewhere, and
for general dimensions n > 2, one has recourse to the Gagliardo-Nirenberg-Sobolev
inequality. I’m going to give quickly a proof of the Poincaré inequality for C∞

c (R)
specifically required here in regard to H1

0 (0, L).

Theorem 1 (Poincaré inequality for R
1) Given any open bounded set U ⊂ R and

any φ ∈ C∞
c (U), one has

‖φ‖L2 ≤ µ(U)‖φ′‖L2

where µ(U) is the Lebesgue measure U .

Proof: We may assume as usual that φ is defined on all of R by setting φ ≡ 0 for
x ∈ R\U , though we will need to keep in mind the location of the support of φ:

supp(φ)⊂⊂U.

By the fundamental theorem of calculus

φ(x) =

∫ x

−∞

φ′(t) dt.

This implies

|φ| ≤
∫

|φ′|. (15)

Squaring and integrating on U we get

∫

U

|φ|2 ≤
∫

U

(
∫

|φ′|
)2

=

(
∫

|φ′|
)2 ∫

U

1 = µ(U)

(
∫

|φ′|
)2

.

Thus, taking the square root

‖φ‖L2 ≤
√

µ(U)

∫

|φ′| =
√

µ(U) ‖φ′‖L1.

Continuing from here with the holder inequality since the constant function χU ≡
1 ∈ L2(U), we get

‖φ‖L2 ≤
√

µ(U)〈|φ′|, χU〉L2

≤
√

µ(U)‖φ′‖L2‖χU‖L2

= µ(U)‖φ′‖L2 . �
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Remark: We recall that the Sobolev conjugate exponents p and p∗ are defined by
1/p − 1/p∗ = 1/n. These are usually only used when n ≥ 3 and the Gagliardo-
Nirenberg-Sobolev inequality asserts that

‖φ‖Lp∗ ≤ C‖Dφ‖Lp for all φ ∈ C∞
c (Rn)

with the constant independent of the support of φ. In the case n = 1 and p = 1, note
that p∗ is formally determined to be p∗ = ∞. In fact (15) implies

‖φ‖L∞ ≤ ‖φ′‖L1

with the universal constant C = 1.

5 Physical Interpretation/Modeling

The function µ from (7) may be interpreted as an external generation or introduction
of heat energy at a constant unit rate uniformly along the portion [ξ − δ, ξ + δ] of the
interval of definition [0, L] which models a “thin heat conducting rod.” To further
understand the meaning of the forcing term µ and the equation −u′′ = µ in this
connection, we briefly discuss the relevant physical quantities involved and the usual
derivation of the 1D heat equation as a model for heat energy diffusion in a rod.

Initial Quantities and Units

We begin with a heat (or thermal) energy density θ1 = θ1(x, t) with units

[θ1] =
[energy]

L
.

The general consideration of units in this connection as well as a further discussion of
densities in relation to the modeling of mass and other quantities in various dimensions
may be found in the notes on integration. This energy density gives the spatial
density of energy at a point x at time t during the evolution, so that at any
time t, the total energy associated with a subset of the model continuum [0, L] may
be calculated from an integral.

Let us also slightly generalize our model by assuming coordinates in the rod on an
arbitrary interval I = [a, b] ⊂ R, so that at any given time t, the total energy within
the rod is assumed to be given by the integral

∫

(a,b)

θ1 =

∫ b

a

θ1(x, t) dx,
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and the energy between any two points x1 and x2 is modeled by
∫

x∈(x1,x2)

θ1.

Note that one may assume θ1 has minimal regularity, say L1(a, b), if the integration
on the left (suggesting, for example, Lebesgue integration) is used. The expression on
the right, more or less, suggests the requirement that θ1 is continuous. Generally, one
considers the distribution of heat energy described by θ1 to be evolving and unknown.

The next quantity of interest is the thermal energy flux field which we may
take as a scalar function φ1 = φ1(x, t) in this case with units

[φ1] =
[energy]

T
.

The field φ1 gives the rate at which energy flows across the point x at time
t. Thus, the rate at which energy exits the interval [x1, x2] is

φ1(x2, t) − φ1(x1, t) =

∫

x∈(x1,x2)

∂φ1

∂x

assuming the partial derivative ∂φ1/∂x exists. Again, φ1 is assumed unknown.
Finally, the forcing or source/sink energy is modeled by a function Q1 = Q1(x, t),

which is presumed in some fashion given or prescribed, with

[Q1] =
[energy]

LT

so that the rate at which energy independently increases in the rod along
the interval [x1, x2] is modeled by

∫

x∈(x1,x2)

Q1. (16)

Thus, Q1 may also be viewed as a kind of energy density, but it is actually an energy
density rate so we have units

[
∫

x∈(x1,x2)

Q1

]

=
[energy]

T
.

The forcing may be associated with external heating or cooling/extraction of heat
energy. The forcing may also be associated with internal (chemical) reactions which
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may also depend on other quantities. For example, it would not be unusual to have
Q1 = Q1(x, t, θ1, φ1), but the dependence on thermal energy density and thermal
energy flux would be assumed to be given by some known physical/chemical principle,
e.g., at a given thermal energy density θ1, heat is generated internally at a (density)
rate of Q1(θ1).

5.1 Energy Accounting

With these quantities the accounting of energy transfer into and out of the portion
[x1, x2] of the rod is expressed by

d

dt

∫

x∈(x1,x2)

θ1 = −[φ1(x2, t) − φ1(x1, t)] +

∫

x∈(x1,x2)

Q1.

In the situation without forcing Q1 ≡ 0, the relation

d

dt

∫

x∈(x1,x2)

θ1 = −[φ1(x2, t) − φ1(x1, t)],

is often referred to as an expression of conservation of energy. Assuming θ, φ ∈
C1[a, b], the accounting relation may be written as a single integral:

∫

x∈(x1,x2)

(

∂θ1

∂t
+

∂φ1

∂x
− Q1

)

=

∫

x∈(a,b)

(

∂θ1

∂t
+

∂φ1

∂x
− Q1

)

χ(x1,x2) = 0.

Assuming this relation holds for all subintervals (x1, x2), we conclude

T1(x, t) =
∂θ1

∂t
+

∂φ1

∂x
− Q1 = 0 for (x, t) ∈ (a, b) × (0, T )

on whatever time interval (0, T ) the evolution is defined. We recall that assuming
T (x0, t0) > 0 at some position x0 and some time t0, along with minimal regularity,
say L1

loc for T1, leads to the contradiction

0 =

∫

x∈(a,b)

T1(x, t0) χ(x0−δ,x0+δ) > 0

for δ > 0 small enough. This contradiction implies T1 ≤ 0, and the same reasoning
under the assumption T1(x0, t0) < 0 gives T1 ≥ 0. It will be noted that this argu-
ment is essentially that used to prove the fundamental lemma of the calculus of
variations, and the conclusion is essentially the same as well.
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The result is a partial differential equation which may be considered a first version
of the 1D heat equation:

∂θ1

∂t
= −∂φ1

∂x
+ Q1. (17)

This is generally considered an equation for the unknown heat density θ1 and thermal
flux field φ1 with a given forcing Q1.

5.2 Temperature and Fourier’s Law

We introduce a new (spatial) quantity, temperature u = u(x, t) measured in a new
fundamental unit which we represent by [temp]. Historically, temperature was difficult
to distinguish from thermal energy, but eventually given the ability to measure both
separately it appeared that different substances require different amounts of
heat energy to produce the same change in temperature. As a result, the
law of specific heat in the form

u = σρ1θ1 (18)

was proposed to model this distinction, where σ is a material constant called the
specific heat capacity and ρ1 is the 1D mass density:

[σ] =
[temp]

[energy]M
and [ρ1] =

M

L
.

Closer examination suggested that improved modeling could be obtained by consider-
ing σ = σ(u) rather than as a constant, though the approximation according to which
σ is considered constant for a certain range of temperatures is also widely used, and
we will use it below.

Temperature, then, is a scale for determining heat energy density, in a certain
sense, arbitrarily with respect to a given substance and some other physical prop-
erty (for example spatial expansion) of the given substance in particular. It may be
noted that this constitutes a very different kind of fundamental units, and what is
being done here is perhaps worth understanding: One takes a specific substance, for
example mercury, and a specific sample mass of that substance. Then one records
the volume of that specific sample mass of mercury at two different times (presum-
ably) in thermal equilibrium but with different constant total thermal energy.
A sample of a different substance is said to have the same temperature as the
mercury if there is no thermal energy exchange when the two samples are put in
thermal contact. Assigning numbers (a certain number of degrees) to the smaller
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volume, say 0◦, and a different number of degrees, say n◦, to the larger volume. The
intermediate volumes are assigned intermediate degree measure according to volume
ratio. That is to say, if 0◦ is the temperature of a volume v0 of mercury and n◦ is
the temperature of a volume vn of (the same mass of) mercury, then when the same
mass of mercury (in thermal equilibrium) has volume v we say that volume v has
temperature k◦ where

v − v0

vn − v0
=

k

n
.

On the face of it, there is no reason to believe that the thermal energies of the three
volumes v0, v, and v1 of mercury share the same proportions determined by spatial
expansion. That is to say, it is not at all obvious that spatial expansion depends
linearly on total thermal energy. Nevertheless, in a practical sense, this (at least)
seems to give good approximation, so that the thermal energy of a sample of mercury
may be assumed to satisfy

u = σHgρHgθHg

and the thermal energy of other substances may be assumed to be determined by
comparison. Thus, we arrive at the law of specific heat (18).

With the introduction of temperature u, it was also observed that heat energy
flows (more or less by definition) from regions of higher temperature to regions of
lower temperature. Accordingly, Fourier suggested the relation

φ1 = −K1ux. (19)

Actually, the full suggestion of Fourier was applicable to any dimension (and three
dimensions in particular) in the form

~φ = −KDu (20)

where ~φ is the vector valued thermal flux field and Du is the spatial temperature
gradient, but we are primarily interested in the 1D case here in which the form (19)
may be considered Fourier’s law. The “constant” of proportionality K = K1 is
called the thermal conductivity and one sees

[K1] =
[energy]L

[temp]T
because [Du] =

[temp]

L
.

As a physical constant, the units of K1 are a little strange. The 3D case given in (20)
gives units

[K] =
[energy]

[temp]TL
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which make some sense as the amount of energy required to increase the difference
in the temperature values measured at two points p1 and p2 in a (homogeneous)
substance by one degree, in one unit of time, if the points p1 and p2 are one unit of
length distant from each other. In one lower dimension, with

[K2] =
[energy]

[temp]T

it is already not entirely clear how to interpret the areal (or laminar) conductivity
physically. The description above involving two points with a distance of one unit of
length between them still seems to make sense, but writing

[K2] =
[energy]L

[temp]TL

one is faced with the units of [energy]L or alternatively [force]L2. But what is
force × area? If we knew that, then we would seemingly have an interpretation. The
same comment applies in the 1D case with force × volume. Presumably these units,
[force]L2 and [force]L3, are natural units in some context, but they do not appear
to be ones we think about often.

Finally, it may be noted (as one should expect) that the model suggested by
Fourier’s law is known to be approximate, in the sense that the model can be improved
by assuming a dependence on temperature K1 = K1(u). One may also naturally
allow, for example, dependence on mass density and a number of other quantities in
addition to position. It is not usual to allow a non-autonomous dependence of K1 on
time.

5.3 The Heat Equation

According to the law of specific heat and Fourier’s law, the PDE (17) becomes a
partial differential equation for the single scalar quantity u:

∂

∂t
(σρ1u) =

∂

∂x
(K1ux) + Q1. (21)

It is usual to assume no mass flow in the modeling of heat diffusion/transfer, so that
ρ is independent of both explicit and implicit dependence on time. More generally, it
is often assumed that σ, ρ1 and K1 are all constants, so that (21) takes the form

∂u

∂t
= k

∂2u

∂x2
+ q. (22)
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where

k =
K1

σρ1
and q =

Q1

σρ1
.

I have left off the subscripts k = k1 and q = q1 here, but the same interpretations
usually hold for the equation in this form under the assumption σρ1 = 1, so that
k = k1 is considered a thermal conductivity and q1 a thermal forcing with

[k1] =
[energy]L

[temp]T
because [q1] =

[energy]

LT
.

We have also noted, that under these assumptions it is possible to scale in space
setting u(x, t) = ũ(

√
k x, t) on (a, b) × (0, T ) where ũ satisfies (22) with ũ and q

defined on (a
√

k, b
√

k) × (0, T ) so that

uxx = kũξξ = ũt − q = ut − f

where f : (a, b) × (0, T ) → R by f(x, t, u, ...) = q(
√

k x, t, . . .). This results in a final
simplest form of the heat equation given by

ut = uxx + f (23)

where again, the constant σρ1 is interpreted to have the value σρ1 = 1 and k1 = 1 is
interpreted as unit conductivity with f a heat energy forcing (density rate).

5.4 Interpretation

We are now in a position to make a (hopefully useful) physical interpretation of µ and
the Dirac distribution as forcing terms for the equation (23) in relation to the weak
and distributional solutions uδ and G(x, ξ). First of all, we note that (23) reduces
to the 1D Poisson equation when u = u(x) and f = f(x) are independent of time.
Thus, the boundary value problem for the 1D Poisson equation represents the steady
state for (23) with time independent forcing.

The forcing function µ given in (7) represents a steady input of heat energy uni-
formly distributed along the interval [ξ− δ, ξ + δ] with total rate of one unit of energy
per time as represented by the condition

∫ L

0

µ(x) dx = 1 (24)
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in accordance with (16). The function uδ is the steady state response to this
particular heat input/forcing with the temperature of the ends fixed with u(0, t) =
u(L, t) = 0. Fourier’s law may be used to model the heat energy exiting at the
endpoints with total exiting rate given by

−[u′(L) − u′(0)] = −[ux(L, t) − ux(0, t)] =
ξ

L
+

L − ξ

L
= 1. (25)

Thus, the total rate of energy input (24) and rate of exiting (25) are the same, as one
should expect.

In the limit as δ → 0, one obtains uδ → G so that the Green’s function is the
formal response to a concentrated unit point source of heat energy (at ξ) of fixed
unit magnitude. This is not necessarily a physically realizable system, but that is not
really the point. We have already made a formal calculation suggesting

u(x) =

∫ L

0

G(x, ξ)f(ξ) dξ

gives a solution to (1) for any forcing function f . We will justify and elaborate this
assertion below. Furthermore, this general approach/construction and its general
characteristics have relatively wide ranging and important applications in many other
contexts, so it’s worth understanding it well.

Summary

We’ve considered the Green’s function G : [0, L] × [0, L] → R for the ordinary differ-
ential operator Lu = −u′′ considered classically on C2[0, L] given by

G(x, ξ) =



















L − ξ

L
x, 0 ≤ x ≤ ξ

− ξ

L
(x − L), ξ ≤ x ≤ L.

This may be easily translated to G : [a, b] × [a, b] → R for any interval I = [a, b]:

G(x, ξ) =



















b − ξ

b − a
(x − a), a ≤ x ≤ ξ

−ξ − a

b − a
(x − b), ξ ≤ x ≤ b.

(26)
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In particular, we’ve considered the interpretation (both mathematically and phys-
ically) of G as a solution of the steady state 1D heat equation ut − uxx + t with
generalized forcing given by a Dirac distribution representing the input of one unit
of heat energy per unit time at x = ξ. These considerations also translate to an ar-
bitrary interval I = [a, b] without significant change. The distributional formulation
of “−u′′ = δξ” for example is

−
∫

(a,b)

uφ′′ = φ(ξ) for all φ ∈ C∞
c (a, b), (27)

and it is easily checked that G = G(x, ξ) given in (26) satisfies this condition with
G(a, ξ) = G(b, ξ) = 0.

We have considered a more physically realistic “dispersed” heat source forcing
given by

µ(x) =
1

2δ
χ[ξ−δ,ξ+δ]

with δ > 0 and [ξ − δ, ξ + δ] ⊂ (0, L). For the boundary value problem
{

−u′′ = µ, on (0, L)
u(0) = u(L) = 0

(28)

we found a weak solution uδ : [0, L] → R given by

uδ(x) =







(L − ξ)x/L, 0 ≤ x ≤ ξ − δ

−(x − ξ)2/(4δ) + L−2ξ
2L

(x − ξ) − 4ξ2−4Lξ+δL
4L

, ξ − δ ≤ x ≤ ξ + δ
−ξ(x − L)/L, ξ + δ ≤ x ≤ L

(29)

with uδ ∈ W 2(0, L)∩⊏
2[0, L]∩C1[0, L]. In view of the regularity of uδ given by (29),

the weak formulation of −u′′ = η may take either of two forms, namely:

−
∫

(0,L)

uφ′′ =

∫

(0,L)

µφ for all φ ∈ C∞
c (0, L)

or
∫

(0,L)

u′φ′ =

∫

(0,L)

µφ for all φ ∈ C∞
c (0, L).

In particular, we note that uδ ∈ W 2,p(0, L)∩W 2,p
0 (0, L) for every p ≥ 1 with classical

first derivative

u′(x) =







(L − ξ)/L, 0 ≤ x ≤ ξ − δ
−(x − ξ)/(2δ) + (L − 2ξ)/(2L), ξ − δ ≤ x ≤ ξ + δ
−ξ/L, ξ + δ ≤ x ≤ L

18



and weak second derivative −µ. We recall/note that W 2,p
0 is the closure of C∞

c in
W 2,p with respect to the W 2,p norm.

Exercise 5 Translate this discussion of uδ to a general interval I = [a, b].

It is quite interesting to note (and perhaps somewhat unexpected) that the so-
lution uδ matches G identically for |x − ξ| ≥ δ. On the other hand, a classical
solution might well be expected for |x − ξ| ≥ δ, and this means an affine solution
uδ(x) = mx + b. Furthermore, Fourier’s law applied at the endpoints of the interval
with reference to the accounting/conservation of energy, in the sense that for steady
state the unit rate of heat energy from the forcing should match the heat energy
exiting at the endpoints) narrows the possibilities for the affine slopes m.

We now attempt a somewhat more sophisticated approach giving a classical solu-
tion of

{

−u′′ = µδ on (a, b)
u(a) = u(b) = 0

(30)

with µ = µδ ∈ C∞
c (a, b) a specific smooth forcing which constitutes an approximate

identity (which is an interesting construction in itself).
As a final comment before we embark on this endeavor, one can look for the

solution as a C∞ version of the previous solution uδ, and one can ask if we obtain
a C∞ modification of G only supported for |x − ξ| < δ and which is also a classical
solution.

6 Fundamental Solution, Convolution

and Mollification

6.1 Mollification

Let us begin with consideration of the function µ1 : R → R by

µ1(x) =

{

e−1/(1−|x|2), |x| < 1
0, |x| ≥ 1.

It can be shown that µ1 ∈ C∞
c (R) with supp µ1 = [−1, 1]. A plot of µ1 is shown

in Figure 5. It might be assumed that this function is of some particular interest
and, working under that assumption, we might be interested in some properties of µ1

among which are the following:
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Figure 5: A standard test function µ1.

1. µ ≥ 0 and µ1 is even: µ1(−x) = µ1(x).

2. µ1 is increasing and positive for −1 < x < 0 with a unique maximum value
µ1(0) = 1/e

.
= 0.36788.

3. µ1 is positive and decreasing with µ′
1(x) < 0 for 0 < x < 1.

4.
∫

µ1
.
= 0.44399.

The function µ1, or a function with similar regularity and monotonicity properties, is
sometimes called a standard test function. A mollifier or approximate identity
is obtained from µ1 as follows: Let δ > 0 and set

µδ(x) =
1

δm
µ1(x/δ) where m =

∫

µ1.

Notice, first of all, that supp µδ = [−δ, δ] and

∫

µδ =
1

δm

∫ δ

−δ

µ1(x/δ) dx =
1

m

∫ 1

−1

µ1(ξ) dξ = 1.

The convolution (integral) of a function u ∈ L1
loc(R) with µδ is called a mollification

of u:

µδ ∗ u(x) =

∫

ξ∈R

µ(ξ) u(x− ξ).

This function µδ ∗ u : R → R satisfies µ ∈ C∞(R). Convolution also interacts nicely
with u on intervals in R where u is constant or affine: If u(x) ≡ c for x ∈ (x0−T, x0+T )
with T > δ, then

µδ ∗ u(x) =

∫

ξ∈(−δ,δ)

µδ(ξ) u(x− ξ) = c

20



as long as x−ξ ∈ [x0−T, x0 +T ] for |ξ| ≤ δ, that is, for x ∈ [x0−(T −δ), x0+(T −δ)].
More generally, if u(x) = mx + b for x ∈ (x0 − T, x0 + T ) with T > δ, then

µδ ∗ u(x) =

∫

ξ∈(−δ,δ)

µδ(ξ) u(x− ξ)

= b + m

∫

ξ∈(−δ,δ)

µδ(ξ) (x − ξ)

= b + mx − m

∫

ξ∈(−δ,δ)

µδ(ξ) ξ

= mx + b,

again, as long as x ∈ [x0 − (T − δ), x0 +(T − δ)]. Note that the quantity
∫

ξµδ(ξ) = 0
because µδ is even. Explicitly,

∫ 0

−δ

ξµδ(ξ) dξ +

∫ δ

0

ξµδ(ξ) dξ =

∫ 0

δ

xµδ(−x) dx +

∫ δ

0

ξµδ(ξ) dξ = 0.

6.2 Fundamental Solution

Even though it is a simple observation we have made previously, it is striking that
the values of the derivatives of the Green’s function at the endpoints, counted as flux
values with the appropriate signs, according to (26) satisfy

Gx(a, ξ) − Gx(b, ξ) =
b − ξ

b − a
+

ξ − a

b − a
= 1.

This means, in particular, that the most symmetric solution, obtained with the source
at ξ = (a + b)/2 always consists of piecewise affine solutions of ∆u = u′′ = 0 with
slopes m = ±1/2. We extend and translate these symmetric forms to obtain an even
function Φ : R → R given by

Φ(x) = −1

2
|x|

which we call the fundamental solution. We wish to verify several other properties
of the fundamental solution which have analogues in higher dimensions Φ. First of
all, given any f ∈ C2

c (R) we may set

u0(x) = Φ ∗ f(x) =

∫

ξ∈R

Φ(ξ)f(x − ξ) (31)
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to obtain a function u0 ∈ C2(R) satisfying

−∆u0 = −u′′
0 = f. (32)

Consequently, we can (easily) solve

{

∆w = w′′ = 0, on [a, b]
w(a) = u0(a), w(b) = u0(b)

(33)

to obtain a function u(x) = u0(x)−w(x) satisfying the homogeneous boundary value
problem

{

−∆u = −u′′ = f, on [a, b]
u(a) = u(b) = 0

(34)

for Poisson’s equation.
Following a formal simplified version of this construction, we observe that the

general Green’s function may be expressed as

G(x, ξ) = Φ(x − ξ) − w(x, ξ) (35)

where w = w(x, ξ) satisfies

{

∆w = w′′ = 0, on [a, b]
w(a) = Φ(a − ξ), w(b) = Φ(b − ξ).

(36)

Finally, we put everything together (in a certain sense) and explicitly solve

{

−∆u(x) = −u′′(x) = µδ(x − ξ), on [a, b]
u(a) = u(b) = 0

(37)

for a function u = uδ ∈ C∞
c [a, b].

Since Φ ∈ C0(R) and f ∈ C2
c (R) has compact support we may differentiate under

the integral sign in (31) to obtain two continuous derivatives

u′
0(x) = Φ ∗ f ′(x) =

∫

ξ∈R

Φ(ξ)f ′(x − ξ)

and

u′′
0(x) = Φ ∗ f ′′(x) =

∫

ξ∈R

Φ(ξ)f ′′(x − ξ).
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Calculating from the last expression, we find

−u′′
0(x) = −Φ ∗ f ′′(x) = −

∫

ξ∈R

Φ(ξ) f ′′(x − ξ)

=
1

2

∫

ξ∈R

|ξ| f ′′(x − ξ)

= −1

2

∫ 0

−∞

ξ f ′′(x − ξ) dξ +
1

2

∫ ∞

0

ξ f ′′(x − ξ) dξ

= −1

2

[

−ξf ′(x − ξ)∣
∣

0

−∞

+

∫ 0

−∞

f ′(x − ξ) dξ

]

+
1

2

[

−ξf ′(x − ξ)∣
∣

∞

0

+

∫ ∞

0

f ′(x − ξ) dξ

]

= −1

2

[

−f(x − ξ)∣
∣

0

−∞

]

+
1

2

[

−f(x − ξ)∣
∣

∞

0

]

=
1

2
f(x) +

1

2
f(x) = f(x).

Assuming supp f ⊂ [a, b] and x ∈ R\(a, b) we make an additional calculation. First
for x ≤ a,

u0(x) = Φ ∗ f(x) =

∫

ξ∈R

Φ(ξ) f(x − ξ) = −1

2

∫

ξ∈R

|ξ| f(x− ξ)

=
1

2

∫ 0

−∞

ξ f(x − ξ) dξ − 1

2

∫ ∞

0

ξ f(x − ξ) dξ

= −1

2

∫ x

∞

(x − η) f(η) dη

=

(

1

2

∫ ∞

x

f(η) dη

)

x − 1

2

∫ ∞

x

η f(η) dη

=

(

1

2

∫ b

a

f(η) dη

)

x − 1

2

∫ b

a

η f(η) dη

= mx − β,

where

m =
1

2

∫ b

a

f(η) dη and β =
1

2

∫ b

a

η f(η) dη. (38)
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Similarly, for x ≥ b,

u0(x) = Φ ∗ f(x) =

∫

ξ∈R

Φ(ξ) f(x − ξ) = −1

2

∫

ξ∈R

|ξ| f(x− ξ)

=
1

2

∫ 0

−∞

ξ f(x − ξ) dξ − 1

2

∫ ∞

0

ξ f(x − ξ) dξ

=
1

2

∫ −∞

x

(x − η) f(η) dη

= −
(

1

2

∫ x

−∞

f(η) dη

)

x +
1

2

∫ x

−∞

η f(η) dη

= −
(

1

2

∫ b

a

f(η) dη

)

x +
1

2

∫ b

a

η f(η) dη

= −mx + β.

Thus, we have a solution of (32). The fact that u0 ∈ C2(R) along with the calculation
of values outside supp f , the support of the forcing, implies a couple things that are
sort of amazing. Let’s start back with a forcing function f ∈ C2

c (R). We have
taken a specific such function and plotted it on the left in Figure 6. Rather than
simply requiring supp f ⊂ [a, b], let us assume more precisely that a = min supp f
and b = max supp f . One thing these calculations say is that if you want to construct

Figure 6: A forcing function f ∈ C2
c (R) with the values of u0 outside supp f . In this

case, supp f = [0.5, 9.5] and the center of mass is located around x = 31/6
.
= 5.17

(slightly to the right of the center of the support interval) and we have actually plotted
u0/10 for visualization purposes.
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a solution for −u′′
0 = f , then you can start by computing the “center of mass” of f

where the “mass” of the forcing is, as we might expect,

2m =

∫ b

a

f(x) dx

and the “first moment” of the forcing is

2β =

∫ b

a

x f(x) dx,

so that the center of mass is

x =
β

m
=

1

2m

∫ b

a

x f(x) dx.

Next, take the function

u0(x) = −m|x − x| for x ∈ R\ supp f

as indicated on the right in Figure 6, and you have your solution outside the support
of f . These observations constitute the first somewhat amazing observation.

To complete the picture, solve the initial value problem

{

−u′′
0 = f for x ∈ supp f

u0(a) = ma − β, u′
0(a) = m,

then (amazingly) when you use this formula across [a, b], at the endpoint x = b, you
will find u0(b) = −mx + β. Explicitly,

u′
0(x) = m−

∫ x

a

f(ξ) dξ and u0(x) = mx − β −
∫ x

a

∫ t

a

f(ξ) dξ dt for x ∈ supp f .

Applying Fubini’s theorem to the iterated integral, we can write

u0(x) = mx − β −
∫ x

a

∫ x

ξ

f(ξ) dt dξ = mx − β −
∫ x

a

f(ξ)(x − ξ) dξ

which can also be written in the form

u0(x) =

(

m −
∫ x

a

f(ξ) dξ

)

x −
(

β −
∫ x

a

ξ f(ξ) dξ

)

.
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Figure 7: Notice on the left that the points (a, ma − β) and (b,−mb + β) satisfy
ma − β 6= −mb + β. On the right we have filled in, via numerical integration, the
the values of u0 over the interval supp f . (The actual numerical values illustrated are
again u0/10.)

There are several directions we can go from here. Perhaps the first thing to notice
is that this latter construction, or “recipe,” leading to

u0(x) =







mx − β, x ≤ a
(

m −
∫ x

a
f(ξ) dξ

)

x −
(

β −
∫ x

a
ξ f(ξ) dξ

)

, a ≤ x ≤ b
−mx + β, x ≥ b

(39)

does not depend on the assumption f ∈ C2
c (R), but this formula gives a well-defined

C2 function for any f ∈ C0
c (R). It is natural to ask the question

Does this function satisfy −u′′
0 = f even for f ∈ C0

c (R)?

The answer is almost certainly “yes.”

Exercise 6 If f ∈ C1(R) then g = µδ ∗ f ′ ∈ C∞(R) is a weak derivative of µδ ∗ f .
In fact, if f ∈ H1(R) with weak derivative f ′ ∈ L1

loc(R), then g = µδ ∗ f ′ ∈ C∞(R)
is a weak derivative of µδ ∗ f .

Exercise 7 Try to show −u′′
0 = f for f ∈ C0

c (R) with u0 given by the formula above.
Hint: Mollify f and apply the formula to µδ∗f ∈ C∞

c (R). Then take a limit as δ → 0.
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There are other natural questions. For a non-negative forcing function like the one
we have used in Figures 6 and 7, it is clear from the mean value theorem for integrals
that the apex β/m of the “exterior solution” lies within the support interval of f .
This is somewhat less clear if f changes signs.

Exercise 8 Show β/m ∈ (a, b) where a = min supp f and b = max supp f in all
cases.

We now turn to the boundary value problem (33). We have used a = min supp f
and b = max supp f , but there is no reason to assume the endpoints a and b appearing
in (33) are these numbers. Generally, then we may take

w(x) =
u0(b) − u0(a)

b − a
x +

bu0(a) − au0(b)

b − a
=

(x − a)u0(b) + (b − x)u0(a)

b − a
. (40)

In the situation a ≤ min supp f and b ≥ max supp f , this becomes

w(x) =
−mb + β − (ma − β)

b − a
x +

b(ma − β) − a(−mb + β)

b − a

=
−m(a + b) + 2β

b − a
x +

2mab − (a + b)β

b − a
. (41)

In any case, u = u0 − w is a solution (and the unique solution) of (34).
Taking u0(a) = Φ(a− ξ) = −(ξ − a)/2 and u0(b) = Φ(b− ξ) = −(b− ξ)/2 in (40),

we obtain the solution of (36):

w(x, ξ) = −(b − ξ)(x − a) + (ξ − a)(b − x)

2(b − a)
= −(a + b)x − 2ξx + (a + b)ξ − 2ab

2(b − a)
,

and from this we may verify (35):

Φ(x − ξ) − w(x, ξ) = −1

2
|x − ξ| + (b − ξ)(x − a) + (ξ − a)(b − x)

2(b − a)

=

{

(aξ + bx − xξ − ab)/(b − a), a ≤ x ≤ ξ
(ax + bξ − xξ − ab)/(b − a), ξ ≤ x ≤ b

= G(x, ξ).
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We have considered the convolution of a test function with an arbitrary function
(mollification) and the convolution of the fundamental solution with an arbitrary
compactly supported continuous function. Now we combine these considerations and
convolve the fundamental solution with µδ(x− ξ) giving a unit mass forcing centered
symmetrically at x = ξ. Our calculation leading to (39) above applies directly and
we have from (38)

m =
1

2

∫

φδ =
1

2
and β =

1

2

∫

η∈R

ηφδ(η − ξ).

Changing variables in the second integral gives

β =
1

2

∫

t∈R

(t + ξ)φδ(t) =
ξ

2

∫

t∈R

φδ(t) =
ξ

2
.

Thus, (39) becomes

u0(x) =











(x − ξ)/2, x ≤ ξ − δ
(

1
2
−

∫ x

ξ−δ
µδ(t) dt

)

x −
(

ξ
2
−

∫ x

ξ−δ
t µδ(t) dt

)

, ξ − δ ≤ x ≤ ξ + δ

(ξ − x)/2, x ≥ ξ + δ

which satisfies u0 ∈ C∞(R) and −∆u0 = −u′′
0 = µδ.

Substituting m = 1/2 and β = ξ/2 in (41) with a and b again arbitrary subject
to a < ξ < b, we find

w(x) =
2ξ − (a + b)

2(b − a)
x +

2ab − (a + b)ξ

2(b − a)
.

It is again easily verified that

uδ(x) = u0(x) − w(x) ≡ G(x, ξ) for x ∈ [a, b]\(ξ − δ, ξ + δ).

The C∞ modification over (ξ − δ, ξ + δ) is given by

uδ(x) = u0(x) − w(x) for |x − ξ| ≤ δ

=
b − ξ

b − a
(x − a) − x

∫ x

ξ−δ

µδ(t) dt +

∫ x

ξ−δ

t µδ(t) dt

=

(

b − ξ

b − a
−

∫ x

ξ−δ

µδ(t) dt

)

x +

(
∫ x

ξ−δ

t µδ(t) dt− b − ξ

b − a
a

)

.
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Exercise 9 Notice the function uδ = u0 − w ∈ C∞(R) we have just obtained, which
is a solution of (37), resembles very strongly

u(x) = (µδ ∗ G)(x) =

∫

t∈R

µδ(t) G(t − x, ξ).

Is it true that

uδ(x) = (µδ ∗ G)(x) =

∫

t∈R

µδ(t) G(t − x, ξ)?

Exercise 10 Take any solution of (34) based on (41) and (39). Alternatively, take
any one of the functions u(x) = G(x, ξ) determined by Green’s function. Note that
the function extends to all of R

1. Can you give an interpretation of this solution as
a model for the temperature in an infinitely long rod? You may wish to address (and
think about) the validity of the law of specific heat for various temperature scales. Are
negative temperature scales valid for the heat equation? What happens to the modeling
around/with respect to absolute zero?
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