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Linear algebra is the study of linear functions

L : V → W. (1)

The property making a function linear is

L(av + bw) = aLv + bLw. (2)

This property can be broken into two properties:

L(v + w) = L(v) + L(w) (3)

and

L(av) = aL(v). (4)

∗This is a sarcastic reference to Sheldon Axler’s well-known linear algebra text Linear Algebra Done

Right. This is the way I think linear algebra “should” be presented. I wonder what professor Axler would

think. Actually, it is not really clear to me how linear algebra should be presented. I have come to think of

linear algebra as a relatively easy subject, but it is very often difficult for students. It was difficult for me

to figure out what was going on when I learned it. The text and presentation might have been part of the

problem. The key, I think, was motivation, and I did not really understand linear algebra until I understood

it as a tool for the approximation of other more complicated, nonlinear, functions. This point of view is not

the basis of any textbook on linear algebra, as far as I am aware. My favorite text has come to be Linear

Algebra by Charles Curtis, though my presentation is radically different from that of Curtis. Another (truly

famous) text is that of Gilbert Strang. One can also watch Strang’s lectures on the internet—MIT open

courseware. In some sense, Strang has set the standard for linear algebra instruction. Again, my presentation

is radically different from Strang. The famous mathematician Peter Lax once took it upon himself to present

linear algebra as a tool for doing computer graphics. That sounds like a really great idea, but the execution

(surprisingly since Lax is a master at mathematical exposition) was disappointing.
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The first of these two properties (3) is called additivity. The second (4) is called mul-

tiplicative homogeneity of order one. Together the two properties are equivalent to (2)

which is called linearity.

Exercise 1 1. Show that linearity implies/includes additivity.

2. Show that linearity implies/includes homogeneity.

3. Find an additive function which is not homogeneous.

4. Find a homogeneous function which is not additive.

5. Show that together additivity and homogeneity imply linearity.

For any of what I’ve said above to make any sense at all, the domain V and co-domain W

of the function L must be vector spaces. I’ll discuss the technicalities of what it means to

be a vector space below, but I’ll guess you have a pretty good (intuitive) idea already. Look

at the scaling property (4):

L(av) = aL(v).

The symbols a and v are playing rather different roles here. The symbol v represents a

vector (whatever that is) and a represents a “number” or, more properly, a scalar. So,

when you have a vector space you have scalars and vectors and enough algebra so that the

properties above make sense. Again, I’ll give the details presently, but the basic idea should

be, more or less, clear: We are interested in functions L which are additive over vectors and

homogeneous with respect to scaling.

1 Vector Spaces

In order to have a vector space V , which you can think of as a particular kind of set—the

kind of set that can be the domain of a linear function—you also need a second set, which

is a set of scalars. This second set needs to be a field. I’ll tell you, technically, what a field

of scalars is below, but again, just imagine for a moment that you know, and if you’re not

that imaginative, then think of the real numbers R as the field.

We say we have a vector space V over a field. This means we have a way to add any

two elements of V , which are called vectors and a way to combine a scalar and a vector.

That is, scaling is a function which takes a scalar a and a vector v and gives you back a

vector av. I’ll talk about this a little more below, but you should note that I’ve already

started listing the properties of a vector space: A vector space V over a field F is a set V

for which
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1. There exists an operation of addition, that is a function + : V × V → V taking pairs

(v,w) of vectors to their sum, written +(v,w) = v + w.

2. There exists a scaling which is an operation combining a scalar and a vector to give

back a vector:

(a, v) 7→ av.

Exercise 2 What is the domain and co-domain for scaling?

The other properties are these

3. Addition is commutative: v + w = w + v whenever v,w ∈ V .

4. Addition is associative: v + (w + z) = (v + w) + z whenever v,w, z ∈ V .

5. There exists a special vector called the zero vector 0 ∈ V . This vector has the

property that

v + 0 = 0 + v = v for every v ∈ V .

The zero vector is called the additive identity and this property is called the property

of the additive identity.

Exercise 3 Prove that the additive identity is unique, i.e., there can only be one zero

vector. Hint: Assume there are two of them, and then show the two you have are

equal to each other.

6. Each vector v ∈ V has an additive inverse, that is for each v ∈ V , there exists another

vector −v for which

v + (−v) = 0.

We can also write the sum v + (−v) simply as v − v.

Exercise 4 Show that additive inverses are unique.

7. Scaling is associative: a(bv) = (ab)v whenever v ∈ V and a and b are scalars.

8. 0v = 0 and 1v = v for any vector v ∈ V where 0 is the additive identity in the field

and 1 is the multiplicative identity in the field.

9. a(v + w) = av + aw for v,w ∈ V and a a scalar.
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10. (a + b)v = av + bv for v ∈ V and a and b scalars.

Properties 1,3,4,5, and 6 are expressing the fact that V is required to be a commutative

group under addition. (I’ll come back to the notion of a group below.) Property 1 is

sometimes called closure under addition. Property 2 is sometimes called closure under

scaling. Property 9 is the distributive property of scaling across (sums of) vectors. Property

10 says that a vector distributes across a sum of scalars. Together properties 9 and 10 are

called the distributive properties.

Exercise 5 Show that the condition 0v = 0 in property 8 can be omitted, i.e., prove that

this must hold using the other properties.

Exercise 6 Look up the Wikipedia page giving the definition of a vector space and note that

it lists only eight properties. Why do I have ten instead? Consider the following property:

(a) V is a commutative group under addition.

How many properties would you need to list if you started with this as your first property?

Two important scalar fields (for us) are R and C. The two simplest vector spaces to

keep in mind are

Rn = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R}

which is a field over R and

Cn = {(z1, z2, . . . , zn) : z1, z2, . . . , zn ∈ C}

which is a field over C.

Incidentally, here is a definition (in case you missed it above):

Definition 1 A vector is an element of a vector space.

1.1 A Little Abstract Algebra

A vector space has one internal operation (addition) and a kind of external operation,

namely scaling, in which a field “acts” on the vector space. That is, this second opera-

tion of scaling is a function · : F × V → V where F is the field. We of course write

· (a, v) = av.

A field has two internal operations. One is called addition and the other multiplica-

tion. Note: There is not really multiplication in a vector space, in general. There is scaling
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which is sometimes thought of as multiplying scalars with vectors, but that is not quite the

same thing as a genuine multiplication. Thus, in a field F, there is addition + : F × F → F

and multiplication · : F × F → F.

The properties defining a field have a lot in common with those of a vector space. In

fact, every field is also a vector space over itself. Here are the properties defining a field F:

1. F is a commutative group under addition.

2. F\{0} is a commutative group under multiplication.

3. Multiplication is distributive across addition, i.e.,

a(b + c) = ab + ac for every a, b, c ∈ F.

To make everything utterly explicit, I should tell you the definition of a group.

Definition 2 A group G is a set with an operation ∗ : G ×G → G satisfying the following

properties:

1. (associative) g ∗ (h ∗ k) = (g ∗ h) ∗ k whenever g, h, k ∈ G.

2. (identity element) There exists an element e ∈ G for which e ∗ g = g ∗ e = g for every

g ∈ G.

3. (inverses) For each g ∈ G, there is an element g−1 ∈ G for which g−1 ∗g = g∗g−1 = e.

If a group happens to satisfy the following property:

g*h = h*g for every h, g ∈ G,

then the group is called a commutative group. (This property is called...you guessed

it...the commutative property.)

Exercise 7 Give an example of a group which is not commutative. Hint: Think about the

set of square matrices under matrix multiplication.

You might be surprised to be informed that there are other fields besides R and C.

Actually, there are a lot of them. One with which you are familiar is

Q = {p/q : p ∈ Z and q ∈ N},

the field of rational numbers. Here we are writing N = {1, 2, 3, . . .} for the set of nat-

ural numbers and Z = {0,±1,±2,±3, . . .} for the set of integers. The integers Z form a

group under addition, and multiplication is also well-defined, but Z is not a group under

multiplication. N is not even a group under addition.
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Exercise 8 Why isn’t Z a group under multiplication? Is there an operation of multiplica-

tion on Z\{0}?

Returning to the rational field, we can construct another field

Q[
√

2] = {a + b
√

2 : a, b ∈ Q}.

This is a field which is intermediate between Q and R. It is the smallest field in which the

polynomial p(x) = x2 − 2 in Q[x] “splits” or factors.

Let me unpack the last sentence a little bit. The set Q[x] is the collection of all polyno-

mials in x with rational coefficients. The elements look like

anxn + an−1xn−1 + · · · + a1x + a0 =

n
∑

j=0

a jx
j.

This set Q[x] is most often called the polynomial ring over Q. A ring is another kind of

set that is important in abstract algebra. I won’t get into it, but you can think of it as a poor

man’s field.

Exercise 9 Why/how does Q[x] fail to be a field? Show Q[x] is a vector space over Q.

Considered as a polynomial in Q[x], the polynomial x2−2 is irreducible, that is, it does not

factor. But as a polynomial in Q[
√

2][x] we can write

x2 − 2 = (x −
√

2)(x +
√

2).

We can’t write this in Q[x] because
√

2 is not allowed as a coefficient. Of course we can

also factor p(x) = x2 − 2 in R[x], but R is not the smallest field that allows this polynomial

to split. Fields like Q[
√

2] are called Galois extensions, named after the famous (and very

tragic) French mathematician Évariste Galois.

Exercise 10 What is the smallest field extension over which the polynomial p(x) = x2 + 1

splits when considered as a polynomial in R[x]?

Exercise 11 Show that Q[
√

2] is a vector space over Q. What is the dimension of this

vector space?
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1.2 Linear Combinations, Spans, and Linear Independence

I will go ahead and record these definitions/notions/ideas here.

The fundamental expression av+bw appearing in the definition of linearity is an exam-

ple of a linear combination. A linear combination is constructed by scaling (two) vectors

and then adding the results. One can also construct a linear combination of any finite col-

lection of vectors using the same approach: Scale each vector and then add up the results:

k
∑

j=1

a jv j.

The scalars a1, a2, . . . , ak in a linear combination are called the coefficients.

The set of all linear combinations of a subset of a vector space is called the span of that

subset. That is, given an set S ⊂ V where V is a vector space

span(S ) =















k
∑

j=1

a jv j : a1, a2, . . . , ak ∈ F, v1, v2, . . . , vk ∈ S















is called the span of the set S .

Exercise 12 Show that the span of any subset of a vector space is also a vector space.

If V is a vector space and V = span(S ) for some subset S ⊂ V , then S is said to be

a spanning set for V . In the special case where S = {v} is a subset of a vector space

containing a single vector, the span of S is sometimes denoted by

span{v} = 〈v〉.

In this case, if v is the zero vector, then 〈v〉 = {0} is the null (zero dimensional) vector

subspace of V . Otherwise, if v , 0, then 〈v〉 = {av : a ∈ F} is said to be one-dimensional.

Definition 3 A set of vectors S ⊂ V in a vector space V is linearly independent if when-

ever one has a linear combination of vectors in S for which

k
∑

j=1

a jv j = 0,

then all the coefficients must be zero. A subset S ⊂ V is linearly dependent if there exist

scalars a1, a2, . . . , ak which are not all zero and vectors v1, v2, . . . , vk ∈ S such that

k
∑

j=1

a jv j = 0.
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Technically, the notions of linear independence and linear dependence apply to sets of

vectors. Keeping this in mind, can keep you out of trouble sometimes. For example, stu-

dents often say “the vector (0, 0, 1) ∈ R3 is linearly independent of the vectors (1, 0, 0) and

(0, 1, 0),” which is a statement that really doesn’t make any sense. This is especially the

case if such a statement comes in the form “the vector (0, 0, 1) is linearly independent,”

which is inevitably the form in which such a monstrosity presents itself. What such a stu-

dent really means is that {e1, e2, e3} is linearly independent, i.e., is a linearly independent

set. To be proper, if you want to talk about linear independence or linear dependence you

need to talk about a set of vectors. A single vector can never be linearly independent or

linearly dependent. Having said that, there is one harmless abuse of language in which we

will indulge. When a finite collection of vectors {v1, v2, . . . , vn} is linearly independent (or

linearly dependent), we will sometimes say “the vectors v1, v2, . . . , vn are linearly indepen-

dent,” (or linearly dependent). In such a usage, the set {v1, v2, . . . , vn} can be assumed to be

implied.

Exercise 13 Show that any subset of a linearly independent set is linearly independent.

2 Subspaces, Bases, and Dimension

Here are the formal definitions:

Definition 4 A subset Σ of a vector space V is a subspace if Σ is itself a vector space with

respect to the same operations making V a vector space.

Exercise 14 (When is a subset a subspace?) Show that if Σ ⊂ V with

(a) V is a vector space,

(b) Σ is closed under addition, and

(c) Σ is closed under scaling,

then Σ satisfies all the other conditions to be a vector space with respect to the same oper-

ations used in V.

Definition 1 A subset B of a vector space V is a basis for V if every vector v ∈ V can be

written uniquely as

v =

k
∑

j=1

a jv j (5)

for some distinct vectors v1, v2, . . . , vk ∈ B and scalars a1, a2, . . . , ak.
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There are two really important things to recognize about the expression (5). The first one

is that the sum involves only finitely many distinct vectors in B. The second is that by

uniqueness, we are saying both that the vectors from B that are used are unique, and the

coefficients are uniquely determined. (The condition also requires existence of course.)

Exercise 15 Show that the zero vector can never be in a basis. (You showed in Exercise 14

that the zero vector is always in a subspace.)

Exercise 16 Show that if

(a) B is a basis for a vector space V,

(b) v1, v2, . . . vk are distinct vectors in B,

(c) w1,w2, . . .wℓ are distinct vectors in B, and

(d) There exist scalars a1, a2, . . . , ak, b1, b2, . . . , bℓ such that

k
∑

j=1

a jv j =

ℓ
∑

j=1

b jw j, (6)

then k = ℓ,

{v1, v2, . . . , vk} = {w1,w2, . . . ,wk},

and, the corresponding coefficients of corresponding basis elements in (6) are the same.

Hint: Use induction.

Exercise 17 Find a basis for the polynomial ring Q[x] considered as a vector space over

Q.

When there exists a basis B for a vector space V and B has finitely many elements, then we

say V is finite dimensional. When this happens, then every basis for V will have exactly

the same number of elements, and that number is called the dimension:

Definition 2 The dimension of a finite dimensional vector space is the number of elements

in a basis.

If the vector space V contains a nonzero vector but does not have a finite basis, then we say

V is infinite dimensional. There is one other possibility: If V = {0}, then we say V is zero

dimensional.
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Exercise 18 Let e j ∈ Rn denote the vector with 1 (the multiplicative identity in R) in the

j-th entry and zeros in all other entries. Show that {e1, e2, . . . , en} is a basis for Rn. This is

called the standard unit basis. When n = 3, one often encounters e1 = ı̂, e2 = ̂ and e3 = k̂

or some similar notation for the standard unit basis vectors.

Exercise 19 Show that a set S ⊂ V where V is a vector space is a basis if and only if S

is a linearly independent spanning set. Thus, this is an alternative definition of the term

basis.

3 Real Transformations

A good first start at learning linear algebra is to think about linear functions L : Rn → Rm

where the domain and co-domain are real Euclidean vector spaces.

The linear transformations L : R1 → Rm are easy to understand. Such mappings are

determined by a single image vector L(1) ∈ Rm. In fact,

L(t) = tL(1) for every t ∈ R.

Of course, a little more can be said. If L(1) = 0, then L is called the null transformation.

And this particular transformation is always one to consider no matter what class of linear

functions you are thinking about. That is, L : V → W by L(v) = 0W for all v ∈ V is always

linear. This is a reasonable place to mention a marginally related fact which might be called

the first general fact about linear functions:

Given L : V → W, linear, it is always true that L(0V ) = 0W .

Here are some words to describe linear transformations L : R1 → Rm under various

conditions determining subclasses:

1. m = 1 so that the domain and co-domain of L are both R1.

(a) If −1 < L(1) < 1, i.e., |L(1)| < 1, then L is called a contraction.

(b) If L(1) < 0, then L is orientation reversing.

(c) If L(1) > 0, then L is orientation preserving.

(d) The particular map L : R1 → R1 by L(t) = −t is called a change of orientation.

2. If m > 1, and L is not the null transformation, then L is a parameterization of the line

ℓ = {tL(1) : t ∈ R} ⊂ Rm, and this is a parameterization with speed |L(1)|.
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Drawing the pictures for these kinds of mappings is important, but I’ll leave it to you.

The next step might be to consider L : R2 → R1 (linear). At this point it is perhaps

worthwhile for the purpose of organization to bring in the second and third general facts

about linear functions:

Given L : V → W, linear, it is always true that

ker(L) = {v ∈ V : L(v) = 0W} is a subspace of V.

Given L : V → W, linear, it is always true that

Im(L) = {L(v) ∈ W : v ∈ V} is a subspace of W.

The subspace ker(L) is called the kernel or null space of L. The subspace Im(L) is called

the image.

These general facts can be quite helpful for us in considering L : R2 → R1 because a

Euclidean space only has so many kinds of subspaces. In particular, in view of these facts

there are three obvious cases to consider

(a) ker(L) = {0}.

(b) ker(L) is a line span{v} = {tv : t ∈ R} for some nonzero vector v ∈ R2.

(c) ker(L) = R2.

In the case of the last one, we have the null transformation of course.

The first possibility, case (a), is somewhat interesting. In this case, there are very few

vectors v ∈ R2 for which L(v) = 0. In fact, there is only one such vector. When we

talk about linear transformations on Euclidean spaces, there are some common, and pretty

helpful, conventions. One of those is that we usually write our vectors as column vectors.

For example, instead of e1 = (1, 0) ∈ R2 we will write

e1 =

(

1

0

)

. (7)

This doesn’t work so well in regular text, but it’s rather nice to look at in a display like

(7). There is also a more important reason which, if you don’t know it already, you will

know soon. In any case, we can usually get away with writing vectors in rows when we

write them in regular text and in columns when we write/type them in displays without

much comment. If we want to emphasize one orientation or another, then we can use a
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transpose. That is, the vector e1 appearing in (7) could have been described in the line

before (7) as e1 = (1, 0)T . A second convention is that we often omit the parentheses of

evaluation. Thus, the vector L(v) appearing near the beginning of this paragraph might be

expressed as Lv. In particular, we know that if ker(L) = {0}, then

L

(

1

0

)

= a , 0 and L

(

0

1

)

= b , 0.

This means that

−b

a
L

(

1

0

)

+ L

(

0

1

)

= −b

a
a + b = 0. (8)

But using linearity we can write the left side of this relation as

L

(

−b

a

(

1

0

)

+

(

0

1

))

= L

(

−b/a

1

)

.

We conclude that
(

−b/a

1

)

∈ ker(L)\{0}

which contradicts the fact that ker(L) = {0}. The conclusion of this little calculation is that

we can’t have ker(L) = {0} for L : R2 → R1 linear.

We can arrive at this same conclusion another way too. For linear functions L : Rn →
Rm there is a theorem saying, roughly, that all the dimensions in the domain have to be

accounted for. More precisely,

n = dim ker(L) + dim Im(L).

You have n dimensions in the domain and either those dimensions have to be collapsed, as

represented by the dimensions in ker(L) or they have to be transformed into dimensions in

the image. In our case L : R2 → R1, we have n = 2, and the image is a subspace of R1 so

that

dim Im(L) ≤ 1.

Thus, if you try to make the assumption dim ker(L) = 0, then the dimensions just don’t add

up. This theorem is so important, I’ll state it again: If L : V → W is linear and V is a finite

dimensional space, then

dim Dom(L) = dim ker(L) + dim Im(L). (9)

12



3.1 A Proof

It is not the objective of these notes (or of this course) to emphasize proofs, especially when

the result is intuitively plausible. However, sometimes stated results, after contemplation,

do not seem so obvious and can spark curiosity. In such cases some comments about the

proof seem, at least, nice to think about. This is usually true with results that are very

important. The dimension theorem in the previous section (which is also sometimes called

the Fundamental Theorem of Linear Transformations) is important, and we could go over

the proof. On the other hand, the result is intuitively compelling and, with a little effort,

easy to remember. Also, it has just been stated so I think it is best to let students reading

these notes ruminate over it for a while. Of course, if you’re really interested, you can look

up the proof—or, even better, try to prove it yourself. But I’m going to present a proof of a

different result here.

I hope a result, which was not stated explicitly, from the section before last has been

gnawing at your curiosity. The main result justifying the definition of dimension and most

of what we believe about the important concept of basis is the following:

Theorem 1 If w1,w2, . . . ,wn+1 are n + 1 vectors lying in the span of a set {v1, v2, . . . , vn} of

n vectors, then

{w1,w2, . . . ,wn+1} is a linearly dependent set.

Proof: We will give a kind of inductive proof. It is also a proof by contradiction.

Let us assume we have collections {w1,w2, . . . ,wn+1} and {v1, v2, . . . , vn} as in the hy-

potheses of the theorem, but that

{w1,w2, . . . ,wn+1} is a linearly independent set. (10)

Our basic claim about this assumption is that if n > 1, then it is possible to find (some) n

vectors which are linearly independent within the span of (some) n − 1 vectors. This we

state as a technical lemma:

Lemma 1 If n > 1 and

{w1,w2, . . . ,wn+1} ⊂ span{v1, v2, . . . , vn}

is a linearly independent set, then there exist vectors w̃1, w̃2, . . . , w̃n and vectors ṽ1, ṽ2, . . . , ṽn−1

for which

{w̃1, w̃2, . . . , w̃n} ⊂ span{ṽ1, ṽ2, . . . , ṽn−1}

with {w̃1, w̃2, . . . , w̃n} linearly independent.
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Proof of the lemma: We know each wi for i = 1, 2, . . . ,wn+1 is in the span of v1, v2, . . . , vn.

That is, there are coefficients ai j with 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n such that

wi =

n
∑

j=1

ai jv j for i = 1, 2, . . . , n + 1.

By reordering if necessary, we can assume the last coefficient an+1,n in the linear combina-

tion giving wn+1 is nonzero. (If all the last coefficients were zero, then we could just throw

away vn and get {w1,w2, . . . ,wn} ⊂ span{v1, v2, . . . , vn−1}, and we would be done because

any subset of a linearly independent set is linearly independent

as per Exercise 13. Therefore, we can write

wn+1 =

n−1
∑

j=1

an+1, jv j + an+1,nvn,

and

vn =
1

an+1,n

















wn+1 −
n−1
∑

j=1

an+1, jv j

















.

Using this we can write

w1 =

n−1
∑

j=1

a1 jv j +
a1n

an+1,n

wn+1 −
an j

an+1,n

n−1
∑

j=1

an+1, jv j

and similarly for w2,w3, . . . ,wn. As a consequence the vectors

w1 −
a1n

an+1,n

wn+1,w2 −
a2n

an+1,n

wn+1, . . . ,wn −
ann

an+1,n

wn+1

constitute n vectors lying in the span of {v1, v2, . . . , vn−1}. It remains to show these vectors

are linearly independent. If

n
∑

j=1

α j

(

w j −
a jn

an+1,n

wn+1

)

= 0,

then
n

∑

j=1

α jw j −
















n
∑

j=1

α ja jn

an+1,n

















wn+1 = 0.
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By the assumed linear independence of {w1,w2, . . . ,wn+1}, this implies

α j = 0 for j = 1, 2, . . . , n.

This completes the proof of the lemma.

Returning to the main proof and applying the lemma repeatedly, we obtain finally two

vectors w̃1 and w̃2 with

{w̃1, w̃2} linearly independent (11)

and both w̃1 and w̃2 in the span of a single vector v. This means that for some scalars a and

b, we have

w̃1 = av and w̃2 = bv.

It follows that bw̃1 − aw̃2 = 0. According to (11) we conclude a = b = 0. But this means

w̃1 = w̃2 = 0, and the set {w̃1, w̃2} is very far from linearly independent1 contradicting what

we have shown in (11). �

3.2 Considering Transformations Without Coordinates

Of course, there still remains the middle case for L : R2 → R1 in which dim ker(L) =

dim Im(L) = 1. Our suspicions about this case should include the following:

1. The nonzero vector v for which ker(L) = span{v} should be important; maybe this

vector, more or less, determines L, and...

2. Somehow, this case should be, more or less similar to L0 : R1 → R1 when L0(1) , 0.

One thing that becomes evident, after you think about it, is that the vector v, while

important, cannot (and is not going to) play the role the vector 1 did for L0. This is because

Lv = 0. The important thing v is telling us is not about interesting scaling/1D linear

mapping. The vector v is telling us (all) the vectors that get collapsed by L.

We need another vector to find the interesting scaling. We can choose any vector

w ∈ R2\〈v〉.

If we think in terms of coordinates, there is an obvious choice for w, namely, a vector

orthogonal to v. To be very specific, if we take v = (v1, v2)T , then we can take the coun-

terclockwise rotation v⊥ = (−v2, v1)T for the mapping vector. At this point, the crucial

observation is the following:

1See, for example, Exercise 15.
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Every vector x ∈ R2 can be written uniquely as

x = aw + bv (12)

for some a, b ∈ R, and

Lx = aLw. (13)

Hopefully, the similarity between the relation (13), namely, L(aw + bv) = aLw and L0(t) =

tL(1) should be noticeable. According to (13) we can see that indeed, R2 is partitioned

into lines parallel to v on which L is constant, and the behavior along the line through w is

very similar to that of L0 : R1 → R1. The only difference is the question of coordinates,

and we return to consider this question carefully later. For the moment, we consider the

verification of (12) which leads us to somewhat different considerations.

3.3 Systems of Linear Equations

As we consider the assertion above concerning (12), we wish to show two things:

1. Given x ∈ R2, there exist real numbers a and b for which x = aw + bv, and

2. Given x ∈ R2, there is precisely one pair (a, b) ∈ R2 for which x = aw + bv.

That is, we wish to show existence and uniqueness. If we introduce coordinates using the

standard basis vectors e1 and e2 for R2, then we can write (12) as
{

x1 = aw1 + bv1

x2 = aw2 + bv2.
(14)

This is an example of a system of two linear equations in two unknowns. Let’s make sure

we understand the identity of the quantities involved. The unknowns here are a and b. The

coordinates of v = (v1, v2)T
, 0 are considered known, though they will depend on the

particular linear transformation L : R2 → R we start with and the fact that the assumption

ker(L) = 〈v〉 is satisfied. The vector w = (w1,w2)T
< 〈v〉 is also considered known, and

if we wish to make a specific choice, we could choose w = v⊥ = (−v2, v1)T . Finally, the

vector x = (x1, x2)T is considered known (but arbitrary) in this context.

Now, there are always five different ways to think about a system of linear equations,

and I’m going to go through all of them for this particular system.

1. The system written out, namely (14). This is what Strang would call the “row

picture,” and one can start to see from (14) why we wish to think of the vectors w, v

and x as row vectors.
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2. The vector equation is a minor modification of (14) obtained by writing the sides of

the equation as vectors:

(

w1a + v1b

w2a + v2b

)

=

(

x1

x2

)

= x. (15)

From this we can see clearly why we want to think of x, at least, as a column vector.

3. The linear combination problem is a minor modification of the vector equation

(15) obtained by writing the left side as a linear combination:

a

(

w1

w2

)

+ b

(

v1

v2

)

=

(

x1

x2

)

. (16)

This is what Strang calls the column picture. It will also be noted that this particular

system of linear equations arose in this particular form: aw + bv = x.

4. The matrix equation is obtained by interpreting the vector equation (15) in a dif-

ferent way, namely as a matrix multiplied by the unknown vector, which we have

not yet introduced. The unknown vector, is simply the column vector of unknowns,

namely,
(

a

b

)

.

In terms of this vector (15) can be written as

(

w1 v1

w2 v2

) (

a

b

)

=

(

x1

x2

)

. (17)

Notice that in the linear combination/column picture the unknowns, a and b, are

viewed as coefficients. The coefficients are unknown. In this matrix equation the

matrix

M =

(

w1 v1

w2 v2

)

is called the matrix of coefficients and its entries are considered (known) coeffi-

cients. Note finally that this matrix equation is

M

(

a

b

)

= x.
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5. The mapping picture takes one more step based on the observation that there is a

linear map associated with multiplication by the matrix M. This map is L2 : R2 → R2

given by

L2(z) = Mz

with z denoting a column vector in R2. The existence question is thus a question of

wether or not the vector x is in the image of L2. The uniqueness question becomes:

Does L2(z1) = L2(z2) imply z1 = z2? This mapping picture brings the study of

systems of linear equations back to the study of linear functions.

It will be noted, that we came upon this system of equations trying to understand a linear

function L : R2 → R1, and the mapping picture tells us that we need to know something

about a linear function L2 : R2 → R2, which is (at least nominally) more complicated. We

will discuss linear mappings from R2 to R2 in detail later, but we need to know something

about them now.

3.4 Considering Transformations With Coordinates

We can begin with the special case when we take w = v⊥. In this case, the original system

(14) becomes
{

−v2a + v1b = x1

v1a + v2b = x2.

It is easy to check, for example by elimination, that our claim holds with

a =
v1x2 − v2x1

v2
1
+ v2

2

and b =
v1x1 + v2x2

v2
1
+ v2

2

.

The denominators here are known to be nonzero because v is a nonzero vector. Similar

manipulations can be done in the general case of (14) to obtain

a =
v2x1 − v1x2

w1v2 − w2v1

and b =
w1x2 − w2x1

w1v2 − w2v1

.

This will give us the desired unique solution of our claim (12) as long as the quantity

w1v2 − w2v1 is nonzero. This quantity will be recognized as the determinant of the matrix

M appearing in the matrix equation and mapping picture above. Thus, for our immediate

purposes, it is enough to establish the following:

Lemma 2 If v and w are linearly independent vectors in R2, then the determinant of the

matrix M with v and w in the columns is nonzero.

Both solutions for a and b given above are forms of Cramer’s rule.
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What we know about L : R2 → R1

Returning to the consideration of L : R2 → R1, linear with ker(L) = 〈v〉 for some v , 0,

we had one way to understand L above (without coordinates):

L(x) = L(aw + bv) = aLw

which can be interpreted as a kind of skew projection where aw is the projection of x onto

w with respect to the line field determined by v. (You should draw a picture of this.) The

equation

x = aw + bv

is uniquely solvable for a and b with a being the w-coordinate of x with respect to the basis

{w, v}.
In this first way of understanding L, which is pretty good, we have not mentioned

the standard basis {e1, e2} for R2. In fact, it is rather difficult for us to think about the

Euclidean spaces without thinking of the standard basis, but we should try because there

are many vector spaces (even of dimension two over R) for which the identification of a

corresponding basis is far from obvious. One example is P1[x] = {a1x+ a0 : a1, a0 ∈ R} the

vector space of polynomials of order no more than one over R. You might think {x, 1} is a

basis corresponding to {e1, e2} for R2, but there is really no reason to think that. It is true

that {x, 1} is a basis for P1[x], but there is no picture suggesting any natural orthogonality.

Exercise 20 Consider the inner product on P2[x] = {a2x2+a1x+a0 : a2, a1, a2 ∈ R} given

by

〈p, q〉 =
∫ 1

−1

p(x)q(x) dx.

(a) Calculate 〈x2, 1〉. If you get a nonzero answer, then x2 and 1 are not orthogonal/perpendicular.

(b) The inner product gives a norm or distance to the origin by

‖p‖ =
√

〈p, p〉.

Calculate ‖1‖. If you get something other than 1 (the scalar), then 1 (the polynomial)

is not a unit vector.

What we know about a linear function L : R2 → R1 without coordinates may seem a bit

vague. After all, the vector v is only determined up to a nonzero constant scaling, and the

vector w can be almost any vector at all. For a general mapping of a two-dimensional vector

space into a one-dimensional vector space, this is about all one can say. If the domain is

Euclidean space R2 and the co-domain is Euclidean space R1, we usually say more.
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A second way to understand L : R2 → R1

With (standard) coordinates we can write x = x1e1 + x2e2 and

Lx = x1Le1 + x2Le2.

This last expression may be recognized as having the form of a Euclidean inner product

or dot product:

L(x) = x · w with w a new vector (Le1, Le2)T .

Another alternative is to consider the matrix multiplication

(Le1, Le2)x = (Le1, Le2)

(

x1

x2

)

(18)

where wT = (Le1, Le2) is a row vector called the mapping vector or the matrix of L with

respect to the standard basis. This is a good point to try to emphasize something:

Technically, whenever we write down the matrix of a linear transformation, we

must have a specific basis in mind for both the domain and the co-domain.

Without these specified, there is no matrix associated with a linear transforma-

tion. We are simply so used to using the standard Euclidean bases whenever

we see L : Rn → Rm, that it is difficult for us to wrap our mind around this,

technically correct, observation.

In (18) the result of the matrix multiplication is, technically, a 1 × 1 matrix. This matrix,

however, is naturally identified with the single scalar entry it contains, and one often writes

Lx = (Le1, Le2)x. (19)

This is a minor abuse of notation because the quantity on the left Lx ∈ R is a scalar while

the object on the right is a 1 × 1 matrix in M1(R) the set of all square one-by-one matrices

with real entries. But the important point is the following: In order to write (19) we have

used the bases

D = {e1, e2} for the domain R2 and C = {1} for the co-domain R.

Let’s go a little further with this. Recall our two suspicions about this case should include

the following:

1. The nonzero vector v for which ker(L) = span{v} should be important; maybe this

vector, more or less, determines L, and...
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2. Somehow, this case should be, more or less similar to L0 : R1 → R1 when L0(1) , 0.

Evidently, in coordinates, our function is determined by the mapping vector (Le1, Le2).

What is the relation between this vector and v? What is the relation between this vector

and scaling? Recall that v was, in general, a nonzero vector spanning the kernel. Note that

(Le1, Le2) is a nonzero vector. (Why?). First of all, we claim (−Le2, Le1)T spans ker(L).

This means that no matter which spanning vector v we choose, we will get a multiple of

(−Le2, Le1)T . That is, up to scaling, the mapping vector (Le1, Le2) tells us v, and up to

scaling v gives the mapping vector. Let us rewrite (19) as

Lx =
√

(Le1)2 + (Le2)2
(Le1, Le2)

√

(Le1)2 + (Le2)2

(

x1

x2

)

. (20)

This suggests the choice
〈

(Le2,−Le1)T

√

(Le1)2 + (Le2)2

〉

= ker(L). (21)

In fact, taking

w =
(Le1, Le2)T

√

(Le1)2 + (Le2)2
and v =

(Le2,−Le1)T

√

(Le1)2 + (Le2)2
,

(20) becomes

Lx = α compw(x) where α =
√

(Le1)2 + (Le2)2 > 0

and compw x is the component of the Euclidean (orthogonal) projection of x onto w = v⊥.

This gives a rather complete picture of L : R2 → R1: There are two cases, either L is

the null mapping or dim ker(L) = 1. In the latter case, there is a unit vector v spanning

ker(L). Taking a unit vector w orthogonal to v, the function L is given by a scaling of

the component of the orthogonal projection onto w. With a correct choice of orientation

between v and w, the mapping is given by Lx = αx · w where α = |(Le1, Le2)| is a positive

scaling factor.

Exercise 21 What happens if w and v do not have the correct orientation, i.e., w = −v⊥?

3.5 Components and Projections

We have already seen that given a linearly independent set/basis {v,w} ⊂ R2, there is a

unique solution (a, b)T of the equation

x = av + bw for any vector x ∈ R2.
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The numbers a and b are sometimes called the components of x along v and w respectively

with respect to the basis {v,w}. When the vectors v and w are orthonormal, i.e., orthogonal

to each other and both having unit length, then a special notation is used.

Exercise 22 Show that when {v,w} is an orthonormal basis, then any vector x ∈ R2 satis-

fies

x = (x · v) v + (x · w) w (22)

so that, for example, the component along v is independent of w.

In view of the representation (22) it makes sense to denote the dot product x · v by

compv(x) = x · v

whenever v is a given unit vector (even without any discussion of an orthonormal basis).

Similarly, the vector compv(x) v = (x · v) v is called the projection or orthogonal projec-

tion of x onto v. It should be emphasized that in order to define a component with respect

to an arbitrary basis, knowledge of the entire basis {v,w} is required. Whenever we use the

special notation compv(x) or projv(x), then we are considering the orthogonal component

and orthogonal projection determined by the dot product.

The notation for components and projections just introduced is not universal, and I am

not sure it is the most ideal. I will try, however, to be consistent with the notation and

terminology as I’ve introduced it here.

Other coordinates and other matrices

When we discussed linear functions L1 : R → R we used simply the basis {1} for R. We

could have used, the basis {w}, however, with w an arbitrary nonzero vector. Taking this

basis for the domain and the co-domain, we write, instead of L1 x = xL1(1),

L1 x = L1

(

x

w
w

)

=
x

w
L1w =

L1w

w

x

w
w.

Thus, the matrix of L1 with respect to {w} (used as the basis for the domain and the co-

domain) is

M1 =

(

L1w

w

)

.

Exercise 23 Assuming L1 : R1 → R1 is linear and nonzero, find the matrix of L1 with

respect to the choices

D = {w} and C = {Lw}
for bases of the domain and co-domain respectively.
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Exercise 24 What is the matrix of any linear transformation L1 : R1 → R1 with respect to

the basis {1} (for both the domain and co-domain2)? In what way was the restriction that

L1 was nonzero used in Exercise 23.

Now, let’s take the case L : R2 → R1 with ker(L) = 〈v〉 and v , 0. If w ∈ R2\〈v〉, then

the matrix/mapping vector of L with respect toD = {w, v} and C = {1} is

M = (Lw, 0).

3.6 More on Systems of Equations: Gaussian Elimination

Using the row picture, that is just the system of linear equations as it is given, to determine

the answers to questions of existence and uniqueness of solutions is called elimination.

Gauss came up with a systematic way to determine if a solution exists and, if so, how many

solutions there are along with an explicit formula for those solutions. Gauss’ method is

relatively straightforward, but it gives some extremely useful information.

Gauss’ method applied to the system in (14) looks (roughly) like this: We start with

{

w1a + v1b = x1

w2a + v2b = x2.

Multiplying the first equation by w2/w1 and subtracting from the second equation, we get

{

w1a + v1b = x1

(v2 − w2v1/w1)b = x2 − w2x1/w1.
(23)

In principle, there might have been a problem here if we had w1 = 0. In that case, there

should be a step in which one switches the two equations, or exchanges the rows. Pre-

sumably, some equation has a nonzero coefficient in front of the first unknown, or else that

unknown is not really part of this system of equations. If w1 , 0, we are now in a position

to “read off” the solutions, or at least know what happens.

Notice that the remaining (possibly nonzero coefficient) in the second equation is

w1v2 − w2v1

w1

=
det M

w1

2Note: When the co-domain and the domain are the same vector space, then it is often convenient (and

to some degree a convention) to take the same basis for both. When the domain and co-domain are different

vector spaces this is not possible.
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where det M = w1v2 − w2v1 is the determinant of the coefficient matrix from the matrix

equation (17). If this value is zero, then there are two possibilities. The first is that x2 −
w2x1/w1 is nonzero. In this case, the system has no solution. The second possibility is that

x2 − w2x1/w1 is zero. In this case, under the assumption w1 , 0, there are infinitely many

solutions having the form
{(

a

b

)

: a =
1

w1

(x1 − v1b) with b arbitrary

}

.

In fact, neither of these possibilities happens. To see this, first observe that {w, v} spans a

subspace of R2 which has dimension at least two, and hence dimension exactly two. Thus,

there is at least one solution of the system (14). This means, according to the column picture

that the linaer transformation L2 : R2 → R2 by Lz = Mz is onto. That is, dim Im L2 = 2.

Therefore, by the dimension theorem, dim ker L2 = 0 and ker L2 = {0}. This means L2 is

one-to-one and onto. (If we had z̃ , z = (a, b)T with L2z̃ = L2z = x, then we would have

L2(z̃ − z) = 0 with z̃ − z , 0, that is, we would have obtained a nonzero element of ker(L2)

and a contradiction.) Finally, then, you can check the following:

1. The inverse function L−1
2

: R2 → R2 is linear, and

2. The matrix associated to L−1
2

with respect to the standard basis is a 2x2 matrix M−1

for which MM−1 = I is the 2 × 2 identity matrix.

3. The determinant of the product det(MM−1) is the product of the determinants:

det(M) det(M−1) = 1.

Therefore, det M = w1v2 − w2v1 , 0. Therefore, we read off the solution given above by

Cramer’s rule.

Exercise 25 Solving (23) for b first, and then substituting your expression for b in the first

equation, show the Cramer’s rule solution is obtained.

Exercise 26 Carry out the details of Gaussian elimination for (14) under the assumption

w1 = 0. Notice that in this case, v2 , 0 and w1 , 0. (Why?)

Systems of linear equations are usually presented in the following general form:


































a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm.

(24)
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...here should follow a discussion of general systems of linear equations, Gaussian elim-

ination, and some topics concerning matrices.

The five different ways to look at the system of linear equations (24) are as follows:

1. The row picture (24).

2. The vector equation:



































a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn

...

am1x1 + am2x2 + · · · + amnxn



































=



































b1

b2

...

bm



































.

The vector

b =



































b1

b2

...

bm



































is called the inhomogeneity, especially when b , 0 ∈ Rm.

3. The matrix equation is

Ax = b

where

A =



































a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

am1 am2 · · · amn



































is the coefficient matrix which has size m × n,

x =



































x1

x2

...

xn



































∈ Rn

is the unknown or solution vector, and the multiplication Ax is carried out in the

usual way with the dot product of the i-th row of A with x giving the i-th entry of the

product vector on the left in the vector equation.
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4. The linear combination problem (or column picture) is

x1



































a11

a21

...

am1



































+ x2



































a12

a22

...

am2



































+ · · · + xn



































a1n

a2n

...

amn



































=



































b1

b2

...

bm



































.

5. The mapping picture is Lx = b where L : Rn → Rm by L(x) = Ax.

It should be clear that systems of linear equations go hand in hand with matrices. The

elementary row operations of Gaussian elimination obviously keep the variables in x in

order and can be applied only to the coefficients and the inhomogeneity. Putting these rel-

evant coefficients together in the same matrix (with the inhomogeneity as the last column)

gives the augmented matrix.

Each elementary row operation corresponds to left multiplication by an invertible m×m

matrix. obtained by applying the row operation in question to the m × m identity matrix.

Thus, when m = 2,

1. Interchanging/switching the two rows:

(

0 1

1 0

)

.

(This matrix is its own inverse.)

2. Scale a row by a nonzero constant:

(

α 0

0 1

)

or

(

1 0

0 α

)

with inverses
(

1/α 0

0 1

)

or

(

1 0

0 1/α

)

.

3. Replace the second row by the second row plus a scaling of the first:

(

1 0

α 1

)

.

This has inverse
(

1 0

−α 1

)

.
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Exercise 27 Write down the elementary row operation matrices for general m.

The column space of a matrix with m rows is the subspace of Rm spanned by the

columns. If such a matrix is used to define a linear function, then the image of the linear

function is the column space. The dimension of the column space of a matrix is called the

(column) rank of the matrix.

The row space of a matrix with k columns is the subspace of Rk spanned by the rows

of the matrix, or equivalently the transposes of the row vectors. The dimension of the row

space of a matrix is called the (row) rank of the matrix.

The following facts about the rank of a matrix and Gaussian elimination are basic:

1. Neither the row rank nor the column rank changes under an elementary row opera-

tion. That is, if M is a matrix, and R is an elementary row operation matrix, then the

(row and column) rank(s) of M and the (row and column rank(s) of RM are the same.

2. After Gaussian elimination, obtained by a sequence of elementary row operations

applied to M,

E = RℓRℓ−1 · · ·R2R1M

is matrix reduced to row echelon form (where each successive row has more initial

zeros than the previous row).

3. It is clear that a row echelon form matrix E the same row rank as column rank.

4. The column rank and the row rank of a matrix are equal. This common number is

called the rank of the matrix.

5. If a matrix M = (µi j) has been reduced to row echelon form E using elementary row

operations, then each nonzero initial element of a row in E determines a distinct

column index. Each such index is called a pivot index with the corresponding column

called a pivot column.

6. The collection of pivot columns are clearly a basis for the column space of E.

7. Let Γ be the collection of the pivot indices in the reduced matrix E. Then the set of

columns




































































µ1 j

µ2 j

...

µm j



































: j ∈ Γ



































of M with pivot indices from Γ is a basis for the column space of M.
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This process tells you just about everything about a system of linear equations. In

particular, there exists a solution if the rank of the augmented matrix is the same as the

rank of A. Associated with a system of linear equations is a homogeneous system of linear

equations Ax = 0. This associated homogeneous system always has a sulution x = 0, and

the set of solutions Σ0 is a subspace. (It is the kernel of L.)

Exercise 28 Show that if L : V → W is a linear function and L(x) = y has one solution

σ0, then the set of solutions

Σ = {x ∈ V : L(x) = y}
has the form

Σ = {σ0 + σ : σ ∈ ker(L)}.

The case of a system of linear equations when n = m and A is a square matrix is

special. In this case, L is one-to-one and onto (a bijection) if and only if the determinant of

A is nonzero. This follows from the product formula for determinants:

det(RℓRℓ−1 · · ·R2R1A) = det(Rℓ) det(Rℓ−1) · · · det(R2) det(R1) det(A).

(And if L is a bijection, then A row reduces to the identity matrix.)

3.7 The matrix of a linear function

Whenever we are talking about a matrix, coordinates are under consideration, that is,

a specific choice of basis has been made. Very often this important choice is not even

mentioned. In such cases, one assumes the coordinates are with respect to the standard

basis {e1, e2, . . . , ek} for (vectors in) Rk. But there are other possibilities. Given a linear

function L : Rn → Rm, like the one associated with a coefficient matrix in a system of

linear equations—but ignoring the matrix, we can take any basis D = {v1, v2, . . . , vn} for

Rn and any basis C = {w1,w2, . . . ,wm} for Rm and get a matrix for L as follows: Recall that

the function L is determined by specifying

L(v j) for j = 1, 2, . . . , n.

This is because

L

















n
∑

j=1

x jv j

















=

n
∑

j=1

x jLv j.

Each of the vectors L(v j) can be expressed in terms of the basis C as

Lv j =

m
∑

i=1

ci jwi. (25)
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Thus, we can say the matrix of L with respect to the basesD and C is



































c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

...

cm1 cm2 · · · cmn



































Now, the coordinate expression for v1 in terms ofD is













































1

0

0
...

0













































= e1 ∈ Rn.

That is, when you express v1 as a linear combination of the vectors inD = {v1, v2, . . . , vn},
then the first coefficient is x1 = 1, and all the others are zero. In order to keep things straight

here, we might write












































1

0

0
...

0













































D

for v1 in coordinates. If the matrix



































c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

...

cm1 cm2 · · · cmn



































D,C

is multiplied by e1 ∈ Rn in the usual way, we get the first column



































c11

c21

...

cm1



































=



































c11

c21

...

cm1



































C
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meaning Lv1 is the vector
m

∑

i=1

ci1w1

in accord with (25).

4 Summary: Pause before the (little) storm

You should now understand everything for a linear function L : R1 → R1 and just about

everything for a linear function L : R2 → R1. You should be able to “see” exactly how

these functions work. Certainly you should be able to “compute” anything having to do

with such a function if one is actually given to you explicitly.

Exercise 29 If L : R1 → R1 and the scaling factor L(1) = −1/3, then what is

lim
j→∞

L j(7)

where L j(t) means “compose L on t over and over again j times.”

Exercise 30 If L : R2 → R1 with L(1, 0) = 3 and L(0, 1) = −7, then find ker(L).

All this was not very difficult, though some things may have seemed unnecessarily compli-

cated and strangely unfamiliar. There was a reason for that.

In the mean time, you should have reviewed most of what you know/knew about linear

algebra including the main facts about vector spaces, systems of linear equations, matrices,

and determinants. In particular,

1. A set of vectors S is linearly independent if each vector in the span of S has a

unique representation as a linear combination of vectors in S .

2. A set of vectors is linearly dependent if the zero vector can be written as a linear

combination of (some of) those vectors with the coefficients in the linear combination

nonzero.

3. A linear independent set which spans a vector space is called a basis.

4. If a vector space has a finite set as a basis, then every basis for that vector space has

the same number of elements, and that number is called the dimension of the vector

space. If a vector space V does not have a finite basis, then either V = {0} or V is

called infinite dimensional.
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5. Given a linear function L : V → W where V is a finite dimensional vector space

dim V = dim ker(L) + dim Im(L).

This is called the dimension theorem.

6. Given a basis {v1, v2, . . . , vn} for a vector space V and any vectors w1,w2, . . . ,wn in a

vector space W, a unique linear function L : V → W is determined by the conditions

L(v j) = w j for j = 1, 2, . . . , n. In fact, if x =
∑

a jv j, then

L(x) =

n
∑

j=1

a jL(v j).

7. A system of linear equations is constructed using a coefficient matrix, an unknown/solution

vector, and an inhomogeneity vector.

8. The column rank of the coefficient matrix is the dimension of the space spanned by

the columns of the matrix and the row rank is the dimension of the space spanned

by the rows. These two numbers are the same for every coefficient matrix and their

common value is called the rank. (The same can be said of every matrix.)

9. The rank of a matrix can be determined by Gaussian elimination which involves

elementary row operations and produces an upper triangular matrix in a special

form (called row echelon form) which is row equivalent to the original matrix (and

has the same rank). The rank of a matrix in row echelon form is the number of

nonzero rows in the matrix.

10. The columns of the first nonzero entries in the nonzero rows of a matrix in row

echelon form are called the pivot columns. These columns span the column space.

If T is an upper triangular matrix in row echelon form with pivot columns T j for

j ∈ Γ (where Γ ⊂ {1, 2, . . . , n} is some indexing set) and A is any n × n matrix row

equivalent to T , then {A j : j ∈ Γ} is a basis for the column space of A (where A j

denotes the j-th column of A).

11. Every homogeneous system has the zero vector as a solution. A non-homogeneous

system has a solution if and only if the coefficient matrix and the augmented matrix,

constructed by appending the inhomogeneity to the coefficient matrix, have the same

rank.
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12. The set of solution vectors Σ0 of a homogeneous system of m linear equations in n

unknowns is the kernel of a linear function, which is a vector space. This space is

called the solution space, and it has dimension n− rank(A) where A is the coefficient

matrix. (You should know why this is true.)

13. If a linear system has a solution σ1, then the set of solutions Σ is given by

Σ = {σ1 + σ : Aσ = 0} = {σ1 + σ : σ ∈ Σ0}

where Σ0 is the solution space of the associated homogeneous system.

14. Systems of linear equations in which the unknown/solution vector and the inhomo-

geneity are in the same vector space are special. The coefficient matrix in this case

is square. A system of n linear equations in n unknowns has a unique solution if and

only if det A , 0 where A is the (square) coefficient matrix.

15. Determinants are only defined for square matrices. If A and B are square matrices of

the same size, then

det(AB) = det(A) det(B).

This is called the product formula for determiants.

In addition, a few things have been emphasized that perhaps you didn’t know before.

Among these are:

1. A linear function and a matrix are not the same thing. You can have a linear function

without a matrix. However, any time you have a matrix, you have a (very specific)

linear function.

2. Everything about a system of linear equations or matrices can be understood (more

generally) in terms of linear functions.

3. On the other hand, the consideration of coordinates, systems of linear equations, and

matrices can be a useful in understanding certain linear functions.

We are now going to consider linear functions L : R2 → R2. It will not be so easy

to “see” what all of these transormations do, but we should be able to compute just about

anything.

32



5 Dot Products and Projections

Our next step is to discuss linear functions L : R2 → R2. As can be expected, there will be

new kinds of linear functions to understand. In the study of linear functions L : R2 → R1

we were able to relate the dot product/geometry of elements in the domain to the values

taken by the function. This kind of analysis will also be important for L : R2 → R2, and

we point out some additional details concerning that geometry here.

You are probably familiar with the notion of orthogonal projection. Let’s review that

before we consider more general projections. Given a nonzero vector v ∈ R2, the projection

of x onto 〈v〉 is given by

proj〈v〉(x) = projectionv/|v|(x) =
x · v
|v|

v

|v| .

Whenever we use this notation, we mean an orthogonal projection. Notice that it only takes

one vector v to determine an orthogonal projection

proj〈v〉 : R2 → R2.

Also, you can see from the definition that this function is a linear function.

Exercise 31 Draw a picture illustrating the orthogonal projection function.

Let us assume, for a moment, that v is a unit vector. If we have any nonzero vector v0,

we can obtain a unit vector in the same direction by taking v = v0/|v0|. We also recall the

important relation between the norm of a vector in R2 and the dot product:

|v|2 = v · v.

If |v| = 1, then the projection simplifies to

projv(x) = (x · v) v.

The scalar coefficient given by the dot product x · v is called the component of x along v.

Of course, we again mean the orthogonal component. This value is denoted by

compv(x) = x · v (|v| = 1).

Similarly, even when v , 0 is not a unit vector, we can talk about the component of x along

the subspace 〈v〉.
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Exercise 32 Find a formula for the component of x along the subspace 〈v〉 when v , 0

does not have unit length so that

proj〈v〉(x) = comp〈v〉(x) v.

This same number comp〈v〉(x) would be the coordinate of x with respect to the basis {v,w}
if w is orthogonal to v. Such a basis is called an orthogonal basis.

Exercise 33 Write down a linear system for the coordinates

(

comp〈v〉(x), comp〈w〉(x)
)T

of x with respect to an orthogonal basis {v,w}.

Solution: Starting with x = av + bw, we can take the dot product with v and w to obtain

{

|v|2a = x · v
|w|2b = x · w.

Recall that v and w being orthogonal means precisely that v ·w = 0. A basis {v,w} of R2 is

said to be an orthonormal basis if v and w are orthogonal unit vectors. We now generalize

the concepts of projection and component to obtain a very convenient construction for the

analysis of linear functions.

Parallel Projection

Recall that given any basis {v,w} for R2 and any vector x ∈ R2, there are unique numbers a

and b for which

x = av + bw.

This is a (linear) vector equation for (a, b)T and we used the equivalent matrix equation

with respect to the standard basis to discuss the solvability above. That matrix equation, in

this case, is
(

v1 w1

v2 w2

) (

a

b

)

=

(

x2

x2

)

where x1 and x2 are the coordinates of x with respect to the standard basis. The matrix M

given by

M =

(

v1 w1

v2 w2

)
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is an example of a change of basis matrix. We will have more to say about such matrices

later, but notice that one feeds into the associated linear function the coordinates (a, b)T of

the vector x with respect to the basis {v,w} and is given the coordinates (x1, x2) of x with

respect to the standard basis. Also, the inverse matrix M−1 represents the reverse change

of basis. Thus, change of basis is associated with invertible linear functions, in this case

linear transformations of R2 (to itself).

We could look at obtaining the coordinates (a, b)T in a different way. If we take the dot

product of the equation av + bw = x with the vectors v and w we get

{

(v · v) a + (v · w), b = x · v
(v · w) a + (w · w), b = x · w

or
(

v · v v · w
v · w w · w

) (

a

b

)

=

(

x · v
x · w

)

. (26)

This equation is also always uniquely solvable when {v,w} is a basis for R2.

Exercise 34 Write down the solution of (26) using Cramer’s rule and draw a picture indi-

cating the geometric significance of a and b.

The numbers a and b are naturally called the coefficients or components of x with respect

to the basis {v,w}. These are not orthogonal components, and they are sometimes called

parallel components. This idea is naturally extended by saying that the parallel projec-

tion of x onto v is the vector av. Notice that the parallel projection of a vector x onto v

cannot be determined from the vectors x and v in R2 alone. The parallel direction w is

also required. Consequently, this kind of projection is somewhat more complicated than

orthogonal projection and does not have a standard notation. Nevertheless, the geometric

idea of parallel projection is very important, and we can attempt to introduce a (descriptive

and colorful) notation for it. Given a basis {v,w} for R2, let us denote by

proj‖wv (x)

the unique vector av obtained by expressing x as x = av + bw. This may be read: “The

projection of x onto v with respect to the parallel direction w.” Similarly, we can express

the coefficient as

a = component‖wv (x)

so that

proj‖wv (x) = component‖wv (x) v.

That is “av is the v-component of x with respect to the basis {v,w}.”
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Exercise 35 Show that

proj‖wv : R2 → R2

and

comp‖wv : R2 → R1

are linear functions.

Finally, let us note that we can always obtain, from any basis of R2, a basis forR2 consisting

of unit vectors. This simplifies the discussion of parallel projection. In particular, the

system (26) becomes
(

1 v · w
v · w 1

) (

a

b

)

=

(

x · v
x · w

)

.

Therefore,

a =
(x · v) − (v · w)(x · w)

1 − (v · w)2
= x · v − (v · w)w

1 − (v · w)2
and b = x · w − (v · w)v

1 − (v · w)2
.

The vector v − (v · w)w is orthogonal to w. In particular,

w⊥ = ± v − (v · w)w

|v − (v · w)w|
,

and v − (v · w)w is the orthogonal projection of v onto w⊥. We can compute the norm in

the denominator as follows:

|v − (v · w)w|2 = 1 − 2(v · w)2 + (v · w)2

= 1 − (v · w)2.

This suggests a reinterpretation of the parallel projection. Namely,

comp‖wv (x) =
1

√

1 − (v · w)2
x ·

projectionw⊥(v)
√

1 − (v · w)2
.

This means parallel projection onto v (with respect to the parallel field determined by w) is

given by a scaling of orthogonal projection onto a unit vector

z =
projectionw⊥(v)
√

1 − (v · w)2

in the direction of w⊥.

Exercise 36 Notice that the coefficient matrix in (26) is symmetric, meaning that the matrix

is its own transpose. Show that if A is a symmetric 2 × 2 matrix, then

Ax · y = x · Ay for every x, y ∈ R2.
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6 Linear Automorphisms of R2: Eigenvectors

So far, we should understand all linear transformations L : R1 → Rm and L : R2 → R1

pretty completely. The first class of linear functions was very easy to understand because

only scaling was involved with the fundamental relation

L(t) = tL(1)

which told us everything. The transformations L : R2 → R1 were a little more complicated,

but we used the clever idea of classifying them according to the dimension of the kernel

(and the image) subspaces. In this case, it should be noted that we were saved significant

complication because the case ker(L) = {0}, in which the transformation was one-to-

one, was not possible. First of all, this was simply because there was not room in the co-

domain R to do anything interesting with all of R2. Put another way, such a transformation

is forced to collapse a one-dimensional subspace, and consequently nothing very exciting

happens in that direction. We will not be able to take advantage of that simplification for

L : R2 → R2.

Of course, we can still begin by classifying linear transformations L : R2 → R2 accord-

ing to the dimension of the subspaces ker(L) and Im(L):

(a) dim ker(L) = 2, and L is the null transformation.

(b) dim ker(L) = 1. (A one-dimensional subspace 〈v〉 is collapsed.)

(c) dim ker(L) = 0. (This can happen now with dim Im(L) = 2 by the dimension theorem.)

We can consider this a preliminary classification. An interacting secondary classification

is obtained by considering the possibility of finding eigenvalues and eigenvectors. The

definition is crucial:

Definition 5 Given L : R2 → R2, a nonzero vector v ∈ R2 is called an eigenvector for L

if there is some real number λ for which

L(v) = λv. (27)

Given an eigenvector, the number λ is called an eigenvalue. The set of all eigenvectors

(along with the zero vector),

Vλ = {v ∈ R2 : L(v) = λv}

is called the λ-eigenspace. (It is a subspace of the domain of L.)

Given an eigenvector v with corresponding eigenvalue λ, we say (λ, v) is an eigenvalue-

eigenvector pair.
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This definition can obviously be extended for L : Rn → Rn but would make no sense for

L : Rn → Rm when n and m are different. The condition (27) is familiar and important. The

word “eigen” in German means “own” and (27) expresses the fact that the linear function

when applied to v “stays in its own space” that is the space/line 〈v〉 spanned by v. Put

another way, 〈v〉 is invariant under L, so v might also be called an invariant vector, though

it’s really 〈v〉 that is invariant.

It should not be missed, however, that the requirement v , 0 is also important. The

vector 0 always satisfies (27) for every λ, but 0 is not an eigenvector.

The number λ can be zero. Thus, the kernel is an eigenspace associated with the

eigenvalue λ = 0 (whenever there is a nonzero vector in the kernel). Case (b) above says,

in particular, that there exists an eigenvector. The first lesson to learn about L : R2 → R2 is

the following:

If there exists an eigenvector, then we can “see” and understand everything

about the linear map L : R2 → R2.

It may take some time to see this statement fully, but let’s start with case (b) and see that it

is an accurate statement in that case.

Before we do that, perhaps some examples are in order. A simple rotation of the plane

is a linear function. To be specific counterclockwise rotation by an angle θ is given by

Lx =

(

cos θ − sin θ

sin θ cos θ

) (

x1

x2

)

. (28)

Note that the images of e1 and e2 are the columns in the matrix. This linear transformation

has no eigenvectors unless θ = kπ for some k ∈ Z.

A homogeneous scaling given by

Lx =

(

λ 0

0 λ

) (

x1

x2

)

= λIx (29)

is also linear. This is perhaps the simplest linear function that is not the null map or the

identity (though the class includes the null map with λ = 0 and the identity when λ = 1).

When λ = −1, this is a rotation by angle π. For a homogeneous scaling, every nonzero

vector is an eigenvector.

Exercise 37 Show that if L : R2 → R2 is linear and every nonzero vector in R2 is an

eigenvector of L (associated with some eigenvalue), then L = λ id for some λ.
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In Exercise37 the symbol id = idR2 represents the identity mapping. That is, id : R2 → R2

by id(x) = x.

If L : R2 → R2 by

Lx =

(

λ1 0

0 λ2

) (

x1

x2

)

(30)

where λ1 and λ2 may be different real numbers, then L is said to be a diagonal linear

map. If λ1 , λ2, then not every nonzero vector is an eigenvector, but {e1, e2} is a basis of

eigenvectors. This is also (when λ1 , λ2) an example of an anisotropic scaling.

Exercise 38 Consider ∂Br(0) = {x ∈ R2 : |x| = r} for r > 0.

(a) If L is a simple rotation of the plane, then

L(∂Br(0)) = {Lx : x ∈ ∂Br(0)} = ∂Br(0).

(b) If L is a homogeneous scaling, what is L(∂Br(0))?

(c) If L : R2 → R2 is a diagonal linear map, then show L(∂Br(0)) is an ellipse, and give

the equation/relation defining that ellipse.

Given θ < {kπ : k ∈ Z}, the vectors (cos θ, sin θ)T and (− sin θ, cos θ)T (together) are an

orthonormal basis for R2. The linear map L : R2 → R2 determined by

L

(

cos θ

sin θ

)

= λ1

(

cos θ

sin θ

)

and L

(

− sin θ

cos θ

)

= λ2

(

− sin θ

cos θ

)

(31)

is very similar to a diagonal map. This is an example of a kind of linear map we will

consider later which is called diagonalizable. Recall that the mapping specifications (31)

can also be indicated by

(

cos θ

sin θ

)

7→ λ1

(

cos θ

sin θ

)

and

(

− sin θ

cos θ

)

7→ λ2

(

− sin θ

cos θ

)

.

Exercise 39 Suppose {v,w} is a basis for R2, and L : R2 → R2 is determined by the

conditions

v 7→ λ1v and w 7→ λ2w

for some nonzero real numbers λ1 and λ2. Under what conditions is L(∂B1(0)) an ellipse?
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If {v, v⊥} is an orthonormal basis for R2 and {w,w⊥} is another orthonormal basis for

R2, then there are two linear transformations L± determined by the conditions

L+ : v 7→ w and v⊥ 7→ w⊥

and

L− : v 7→ w⊥ and v⊥ 7→ w.

Exercise 40 Show that L+ is a rotation and L− is not a rotation.

In summary, we have suggested the following examples:

1. orthogonal projection

2. parallel projection

3. isotropic scaling

4. anisotropic scaling (at least in the case of orthogonal eigenvectors)

5. rotation

It may be noted also that rotation can be combined freely with (isotropic) scaling (using

composition in either order). This gives an example which will be used later.

Let us begin with our classification of linear functions L : R2 → R2 according to the

dimension of ker(L). We know that if dim ker(L) = 2, then L is the null map, and there is

nothing to say. Again, let us refer to the situation in which dim ker(L) = 1 as “case (b).” In

this case, ker(L) = 〈v〉 for some nonzero vector v ∈ R2 and (now) Im(L) = 〈Lw〉 ⊂ R2 has

dimension one (by the dimension theorem) for any w ∈ R2\〈v〉.

Exercise 41 Give the details of why we know that any vector w ∈ R2\〈v〉 is a nonzero

vector with Lw , 0.

I think we are in a position to make at least a vague guess at this point.

Setting α = |Lw|/|w|, we guess L is a scaling by α of the component projection

onto some vector z ∈ R2 = Dom(L), transferred to 〈Lw〉. That is, we expect

Lx = α compz(x)
Lw

|Lw|
for α = |Lw|/|w| and some z ∈ R2 with |z| = 1.

Exercise 42 Draw a picture associated with case (b) indicating the vectors v, w, and Lw.

Draw scaling marks on w and Lw to indicate the guess above.
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If we are able to take |w| = 1 (which is likely), then the proposed scaling factor is just

|Lw|. For example, we may begin by taking our null eigenvector v with |v| = 1 and then

take w with w⊥ = v as before. In this case we will have |w| = 1, and we can write any

vector x as

x = aw + bv

so that

Lx = aLw = a |Lw| Lw

|Lw|
. (32)

Thus, we see the proposed scaling factor does make a relatively natural immediate appear-

ance with this choice, and it remains to see the projection.

As we consider the picture associated with Exercise 42 and contemplate the fact that

the domain and co-domain are the same space here and, hence, can be compared to one

another, two subcases present themselves:

CASE 1 Lw ∈ 〈v〉 = ker(L).

CASE 2 Lw < 〈v〉 = ker(L).

In CASE 1, a very interesting thing happens. Not only is it the case that Lw ∈ 〈v〉 but

Lx ∈ 〈v〉 for every x ∈ R2.

This is easy to see since we can write x = aw + bv, so

Lx = aLw ∈ 〈v〉.

Thus, we can take z = w to be a vector with w⊥ = v and |v| = 1 as suggested above. With

this choice x = (x · w)w + (x · v)v and

Lx = (x · w) Lw

= |Lw| (x · w)
Lw

|Lw|
= ±α compw(x) v.

This is almost our guess. It is our guess up to a sign.

If Lw/|Lw| = v, then

Lx = α compw(x) v,

and our guess holds exactly. The other possibility is that Lw/|Lw| = −v. Then we can

choose z = −w and write

Lx = α compz(x) v.
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Again, our guess holds. This is an interesting linear function which we should understand

completely now.

Exercise 43 Draw the mapping picture (with scaling dots) for L is case (b), CASE 1.

Exercise 44 Show that in case (b), CASE 1, L2 ≡ 0.

In case (b), CASE 2, we claim there is another eigenvector corresponding to a different

eigenvalue λ , 0. This is easy to see in this case, though you may know more sophisticated

reasons we will talk about later. Here we know by assumption that L2w , 0, because

Lw < ker(L). On the other hand, we can write Lw = cw+dv for some scalars c and d. This

means, Lw , 0 and L(Lw) = cLw. That is, Lw is an eigenvector. Again, the constant c is

nonzero because Lw < ker(L).

This means, there is a basis {v,w} of R2 consisting of eigenvectors. To find w just take

any w0 ∈ R2\〈v〉 and set w = Lw0. At this point, we can see geometrically L : R2 → R2

with ker(L) = 〈v〉 , {0} and L(R2) = {Lx : x ∈ R2} = 〈w〉.

Exercise 45 Draw the mapping picture (with scaling dots) for L : R2 → R2 in case (b),

CASE 2.

You might think at this point that we can simply take z = w, the eigenvector with nonzero

eigenvalue, and verify our guess (at least up to a sign). It turns out that is not always

the case. Let us write again, as usual, x = aw + bv with v and w unit (eigen)vectors

corresponding to the eigenvalues λ , 0 and λ0 = 0 respectively. Then

Lx = aLw = λ a w. (33)

The question is: Is the coefficient a the projection of x onto some unit vector z? That is, is

there a vector z for which

a = x · z = compz(x) ?

We found these coefficients a and b above by resorting to the standard basis coordinates

and writing w = (w1,w2)T and v = (v1, v1)T . We could do that again, but let’s do something

a little different (that does not depend on the standard basis). Taking the dot product of the

equation x = aw + bv with w and v, we obtain a system of equations:

{

a + (v · w)b = x · w
(v · w)a + b = x · v.
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As usual, there is a linear function and mapping picture associated with this system which

we see by writing
(

1 v · w
v · w 1

) (

a

b

)

=

(

x · w
x · v

)

.

The coefficient matrix in this equation has determinant 1− (v ·w)2 > 0 because v and w are

not parallel. Therefore, there is a unique solution from Cramer’s rule

a =
x · w − (v · w)(x · v)

1 − (v · w)2
= x · w − (v · w)v

1 − (v · w)2
. (34)

The vector w − (v · w)v appearing here is an interesting vector. Notice that this vector is

orthogonal to v because

v · [w − (v · w)v] = 0.

Also, (v ·w)v = projv(w) is the projection of w on v. Therefore, this vector is the projection

of w orthogonal to v. If we compute the norm (squared) of this vector we get

|w − (v · w)v|2 = [w − (v · w)v] · [w − (v · w)v] = 1 − (v · w)2.

This suggests that we consider the unit vector z given by

z =
w − (v · w)v
√

1 − (v · w)2
.

Now (33) becomes

Lx =
λ

√

1 − (v · w)2
(x · z) w =

λ
√

1 − (v · w)2
compzx w.

Thus, we see that our guess was correct to a point, but not quite completely correct. The

scaling factor is not |Lw| but rather

α =
λ

√

1 − (v · w)2
= ± |Lw|

√

1 − (v · w)2
.

Exercise 46 Consider two cases and show that a corrected version of our guess (with a

corrected scaling factor) does hold.

The reason our guess failed was, essentially, that it assumed the projection was onto

z = w. As our calculation showed, the vector z needed to be orthogonal to v, and in the

case where the other eigenvector w is orthogonal to the first eigenvector v, then the guess
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also works because v · w = 0, and the correction factor becomes one. Our intuition was

reasonably good, however, because if we had taken a non-orthogonal projection/component

determined by v, then we would have arrived at a correct guess as well, but the guess would

have been more complicated.

Exercise 47 Express a linear function L : R2 → R2 with ker(L) = 〈v〉 , {0} and a second

eigenvector w in terms of a component along w.

Solution: The component of x along w with respect to the eigenbasis {v,w} is given pre-

cisely by the value of a in (34). Thus, for x = aw + bv we have

Lx = λ a w.

This is saying precisely that the value of L is given by a scaling of the (non-orthogonal)

component of x along w with respect to the basis {v,w} scaled by λ.

Let us return briefly to the part of the analysis of case (b), CASE 2 in which we obtained

the second eigenvector w. We expect to solve the mapping problem Lw = λw for some

nonzero vector w ∈ R2\〈v〉. There are a couple important general facts one should keep in

mind here. Recall, first of all, that by the dimension theorem a linear function L : Rn → Rn

is one-to-one and onto if L is either one-to-one or L is onto. Also, these are equivalent

to the condition that no nonzero vector v satisfies Lv = 0. It is relatively easy to see by

the product theorem for determinants that this condition (of L being a bijection) is also

equivalent to the condition

det A , 0

where A is a matrix for which Lx = Ax with respect to any particular basis. More generally,

if A and B are matrices for which Lx = Ax when x and Lx are written in coordinates with

respect to one basis and Lx = Bx when x and Lx are written in coordinates with respect

to another basis, then there is an n × n matrix Q (a change of basis matrix) with an inverse

matrix Q−1 for which the conjugation

B = QAQ−1

holds. Since QQ−1 = I is the identity matrix, det(QQ−1) = det Q det Q−1 = 1, and

det B = det(QAQ−1) = det Q det A det Q−1 = det A.

This means the number det A is independent of which basis with respect to which one

expresses L in terms of matrix multiplication. This number only depends on L, and we can

call it det(L).
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Please note this well: There is such a thing as the determinant of a linaer transfor-

mation L : Rn → Rn. This is, in principle, different from the determinant of a matrix. The

determinant of a linear transformation is the number you get whenever you choose a basis

for Rn and express L in terms of matrix multiplication by L(x) = Ax, and then take the

usual matrix determinant of A.

Furthermore, the linear transformation L : Rn → Rn is a bijection if and only if det(L) ,

0.

Next, this has an important relation to eigenvalues and eigenvectors. When we are

looking for an eigenvector w of L : Rn → Rn, we are looking for a nonzero vector w

satisfying Lw = λw (for some λ. This can be written

(L − λ id)(w) = 0.

That is, the linear function L − λ id : Rn → Rn is not a bijection, so

det(L − λ id) = 0. (35)

The relation appearing in (35) is notable in that it does not involve the (sought after and

unknown) eigenvector w. In fact, the condition (35) is an n-th order polynomial equation for

the eigenvalue λ called the characteristic equation. The expression det(L − λ id) ∈ Pn[λ],

viewed as an n-th order polynomial equation in λ, is called the characteristic polynomial.

The following are also worth noting:

1. Not all linear functions L : Rn → Rn have eigenvalue-eigenvector pairs.

Exercise 48 Compute the characteristic equation for a rotation of R2.

2. If L : R2 → R2 and

det(L − λ id) = (λ − λ1)(λ − λ2)

for some real numbers λ1 and λ2, then

(L − λ1 id) ◦ (L − λ2 id)(x) ≡ 0 for every x ∈ R2, (36)

where the symbol “◦” indicates function composition. This says, roughly, that “If

you evaluate the characteristic polynomial on the transformation L, then you get the

zero transformation.” It is a special case of what is called the Cayley-Hamilton

Theorem.

Exercise 49 Prove the Cayley-Hamilton theorem in the special case expressed by

(36).
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Exercise 50 Explain (to yourself) what it means to evaluate a polynomial

p(x) =

k
∑

j=0

a jx
j

on a linear function L : Rn → Rn. In particular, you should note that powers are

interpreted in such an evaluation in terms of iteration, and you should understand

what it means to evaluate a constant polynomial p(x) = c on L.

3. The polynomial of least order m = m(x) for which m(L) : Rn → Rn is the zero

mapping is called the minimal polynomial for L. The minimal polynomial divides

the characteristic polynomial and is unique up to a scaling.

4. This last note is not immediately directly related, but this is a good place to get it out

of the way: If

(a) L : Rn → Rm is given by Lx = Ax with respect to some given bases Bn and Bm

of Rn and Rm respectively, and

(b) J : Rm → Rk is given by Jy = By with respect to the basis Bm for Rm and the

basis Bk of Rk,

then there is a linear function

J ◦ L : Rn → Rk : Rn → Rk by J ◦ L(x) = J(L(x))

called the composition of J on L. This linear function is given by J ◦ Lx = BAx

where BA is the matrix product of the k × m matrix B and the m × n matrix A.

Let us assume we have finished with case (b) in which ker(L) is one-dimensional.

Exercise 51 Discuss the eigenvectors associated with orthogonal projection and parallel

projection. You may wish to look at the summary discussion of these functions in Section 8

below.

We turn now to case (c) in which dim ker(L) = 0 and L : R2 → R2 is a linear bijection.

We will use standard coordinates. In this case, the vector Le1 is a nonzero vector. It follows

that

Le1 = |Le1|
(

cos θ0

sin θ0

)
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for some unique θ0 ∈ [0, 2π). It is easy to see then that P ◦ L : R2 → R2 where

P : R2 → R2 by Px =

(

cos θ0 sin θ0

− sin θ0 cos θ0

)

x

is clockwise rotation by the angle θ0 satisfies

P ◦ Le1 = αe1

with α = |Le1| > 0. Thus, the composition P ◦ L has an eivenvector, namely, e1.

Theorem 2 Given any linear function L : R2 → R2 with det(L) , 0, there is a unique

angle θ0 such that L = P−1 ◦ L0 where P−1 : R2 → R2 is counterclockwise rotation by θ0

and L0 : R2 → R2 satisfies L0e1 = αe1 for α = |Le1| > 0.

With respect to the standard basis the matrix of L0 = P ◦ L has the form

A =

(

α a12

0 a22

)

.

The characteristic polynomial of L0 is p(λ) = (λ − α)(λ − a22). This means a22 is also an

eigenvalue. Thus, we have eigenvalue-eigenvector pairs (α, e1) and (β,w) with β = a22.

This does not mean, however, that {e1,w} is necessarily a linearly independent set and,

thus, a basis for R2.

Exercise 52 Show a22 , 0 (in case (c)). Find an eigenvector w associated with the eigen-

value β = a22 and explain when {e1,w} is a basis for R2 (and when this is not the case).

Recall that the first eigenvalue of L0 is given by α = |Le1|. We may be interested in an

expression for the eigenvalue β = a22 in terms of the original linear transformation L. If the

matrix of L with respect to the standard basis {e1, e2} is

M =

(

µ11 µ12

µ21 µ22

)

then our observation about the relation between compositions and matrix multiplication

tells us
(

α a12

0 a22

)

=

(

cos θ0 sin θ0

− sin θ0 cos θ0

) (

µ11 µ12

µ21 µ22

)

so that

β = a22 = −µ12 sin θ0 + µ22 cos θ0.
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If β = 0, then det(P) det M = det A = 0 (which is a contradiction because we are consider-

ing case (c) in which dim ker(L) = 2 so det M , 0).

In order to delineate cases associated with the simplified matrix L0, it is perhaps natural

to ask first the question:

Is it possible that the eigenvector w associated with the nonzero eigenvalue

β = a22 is e1?

The answer to this question is “yes,” but only under rather special circumstances. Express-

ing w in standard coordinates as (w1,w2)T , we have the condition

(α − a22)w1 + a12w2 = 0. (37)

Consequently, we can take

w0 =

(

a12

a22 − α

)

(38)

as an initial eigenvector corresponding to β = a22. Clearly, in order for w0 to be a multiple

of e1, one must have β = a22 = α.

On the other hand, we see that our assertion concerning the vector w0 in (38) was a bit

too hasty. We may now delineate three cases:

(i) a22 = α = |Le1| and a12 = 0.

(ii) a22 = α and a12 , 0.

(iii) a22 , α.

In the first case w0 given in (38) is the zero vector and, hence, is not an eigenvector. On

the other hand, every nonzero vector w = (w1,w2)T satisfies (37) in this case, and L0 is an

isotropic scaling by α = |Le1|. Therefore, L = P−1 ◦ (α idR2) = αP−1 is a counterclockwise

rotation by the angle θ0 with an isotropic scaling (it does not matter in which order these

are applied), and is thus a simple example of a linear function considered above.

In case (ii) we encounter a new kind of linear transformation worth considering in detail.

6.1 Jordan Shear

If the matrix for L0 = P ◦ L (with respect to the standard basis) has the form

A =

(

α a12

0 α

)
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with α = |Le1| > 0 and a12 , 0, then two different normalizations by scaling are standard.

Writing L0 = a12J where

Jx =

(

λ 1

0 λ

)

x (39)

(in standard coordinates) and λ = α/a12, the linear function J : R2 → R2 is called a Jordan

transformation (in standard form).

If, on the other hand, we write L0 = αΣ where

Σx =

(

1 σ

0 1

)

x

(in standard coordinates) and σ = a12/α = tan φ, the linear function Σ : R2 → R2 is called

a (standard) linear shear of R2. It may be mentioned at this point that Mathematica has in

its library of standard functions a function

ShearingTransform = ShearingTransform[φ, v, n]

which is said to “shear by φ radians along the direction v normal to the direction n.” Taking

v = e1 and n = e2, ShearingTransform is precisely an implementation of our standard

shear transformation Σ.

Exercise 53 What does ShearingTransform do for other values of the vectors v and n?

The eigenspace

{v : Jv = λv} = 〈e1〉
associated with J is one-dimensional. Perhaps the easiest way to see the effect of the Jordan

transformation on the plane is to consider the images of the vertical lines {(x, y) : y ∈ R}
and x is fixed. Each maps to the line through α x e1 parallel to the vector e1 +αe2 = (1, α)T .

Thus, the image of the L∞ ball

B∞1 (0) =

{(

x

y

)

: max{|x|, |y|} < 1

}

is a parallelogram skewed/sheared left for λ < 0, decreasing in height as λ increases to zero,

and converging to the segment {(u, 0)T : |u| ≤ 1} as λ tends to zero from the left. Squares

concentric with the boundary of the L∞ ball have images proportionally concentric to the

image of ∂B∞
1

(0) giving a relatively satisfactory depiction of the Jordan transformation.

Careful consideration of the image of the unit circle (with respect to the Euclidean

metric), however, suggests that this basic understanding leaves some important properties

of the Jordan transformation obscure.
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Image of the unit circle under Jordan transformation of R2

J(∂B1(0)) =

{

J

(

x

y

)

: x2 + y2 = 1

}

=

{(

u

v

)

:

∣

∣

∣

∣

∣

∣

J−1

(

u

v

)
∣

∣

∣

∣

∣

∣

= 1

}

.

Thus, a first step in understanding this set is to observe

J−1

(

u

v

)

=
1

λ2

(

λ −1

0 λ

) (

u

v

)

,

so we obtain the quadratic relation

λ2u2 − 2λuv + (1 + λ2)v2 = λ4 (40)

for (u, v) ∈ J(∂B1(0)). It is standard in the treatment of such quadratic relations to introduce

a change of variables by rotation. Let us introduce a new orthonormal basis

{(

cosψ

sinψ

)

,

(

− sinψ

cosψ

)}

.

With respect to this new basis we have

(

u

v

)

= ξ

(

cosψ

sinψ

)

+ η

(

− sinψ

cosψ

)

.

Substituting these values for u and v in the relation (40) we find

(λ2 + sin2 ψ − λ sin 2ψ)ξ2

+ (sin 2ψ − 2λ cos 2ψ)ξη

+ (λ2 + cos2 ψ − λ sin 2ψ)η2 = λ4.

The choice

ψ = ψ1 =
1

2
tan−1(2λ) (41)

reduces the relation (40) in terms of the new coordinates ξ and η to

(λ2 + sin2 ψ − λ sin 2ψ)ξ2 + (λ2 + cos2 ψ − λ sin 2ψ)η2 = λ4. (42)

At this point we recall and use the identities

cos2 ψ =
1

2
(cos2 ψ + 1 − sin2 ψ) =

1

2
(1 + cos 2ψ)
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and

sin2 ψ =
1

2
(sin2 ψ + 1 − cos2 ψ) =

1

2
(1 − cos 2ψ)

to write (42) as

[

λ2 +
1

2
(1 − cos 2ψ) − λ sin 2ψ

]

ξ2 +

[

λ2 +
1

2
(1 + cos 2ψ) − λ sin 2ψ

]

η2 = λ4.

Finally, because tan 2ψ1 = 2λ, we know

cosψ1 =
1

√
1 + 4λ2

and sinψ1 =
2λ

√
1 + 4λ2

.

With these substitutions our relation becomes

ξ2

1
2
(2λ2 + 1 +

√
4λ2 + 1)

+
η2

1
2
(2λ2 + 1 −

√
4λ2 + 1)

= 1.

which is the standard form of an ellipse (in ξ, η coordinates) with major semi-axis horizon-

tal and having length

a =

√

1

2
(2λ2 + 1 +

√
4λ2 + 1)

and minor semi-axis vertical and having length

b =

√

1

2
(2λ2 + 1 −

√
4λ2 + 1).

Since our change of coordinates was simply a rotation, we see that the image J(∂B1(0)) is

an ellipse with major semi-axis of length a along the line of inclination ψ = ψ1 given by

(41) and minor semi-axis of length b along the line with inclination ψ1 + π/2.

Exercise 54 Show that the expression

2λ2 + 1 −
√

4λ2 + 1

determining the length of the minor semi-axis of the elliptical image of ∂B1(0) is actually a

positive number.
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Exercise 55 Show that the relation (40) can be expressed as
〈

BT B

(

u

v

)

,

(

u

v

)〉

= 1

where B is the matrix of J−1 with respect to the standard basis and the inner product here

is the Euclidean dot product. Compute the matrix product BT B and note that you obtain

a symmetric matrix. An expression 〈S v, v〉 (where S is a fixed symmetric transformation)

considered as a real valued function on a vector space V containing the vector v is called

a quadratic form on V.

Exercise 56 Notice that if λ = 0, then the Jordan transformation falls back into case (b) of

linear functions with one-dimensional kernel. What is J : R2 → R2 in this case (in terms

of projection)?

Exercise 57 Make an animation of the image J(B1(0)) under the Jordan transformation

J : R2 → R2 depending on the eigenvalue λ. Indicate the axes of inclination ψ1 = ψ1(λ)

and 2ψ1 as well as the images Je1 and Je2.

Exercise 58 Adapt the discussion above to apply to the image Σ(B1(0)) of the unit circle

under the standard linear shear. What is the eigenvalue for Σ?

To summarize case (ii) of case (c) in which L : R2 → R2 is an automorphism for which

an initial rotation P (clockwise by angle φ determined by (cos φ, sinφ)T = Le1/|Le1|) results

in a scaling

P ◦ L = L0 = (µ12 cosφ − µ22 sinφ)J

of the Jordan transformation, our original transformation

L = (µ12 cos φ − µ22 sinφ)P−1 ◦ J

may be understood as a scaled rotation of Jordan shearing of R2 with (nonzero) eigenvalue

λ =
|Le1|

µ12 cos φ − µ22 sinφ
.

The shear angle of this Jordan transformation is

φ = tan−1

(

1

λ

)

= tan−1

(

µ12 cosφ − µ22 sinφ

|Le1|

)

and the additional rotation determined by the elliptical image of the unit circle is

ψ1 =
1

2
tan−1(2λ) =

1

2
tan−1 2|Le1|

µ12 cos φ − µ22 sinφ
.

It remains to consider automorphisms falling into case (iii) in which we have two dis-

tinct eigenvalues.
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6.2 anisotropic scaling

7 Additional Topics

7.1 Geometry: Inner Product Spaces

7.2 Vector Spaces of Functions

8 Summary

8.1 orthogonal projection

Let v be any unit vector in Rn. Then projection proj〈v〉⊥ : Rn → Rn onto 〈v〉⊥ is given by

projection〈v〉⊥(x) = x − (x · v) v.

Note 〈v〉⊥ is the orthogonal subspace determined by 〈v〉 and is given by

〈v〉⊥ = {x ∈ Rn : x · v = 0}.

If we take v as any nonzero vector, then v/|v| is a unit vector, and

projection〈v〉⊥(x) = x −
(

x · v
|v|2

)

v.

If we take the special case R2, then the vector v⊥ is well-defined and

x =

(

x · v
|v|2

)

v +

(

x · v⊥

|v|2

)

v⊥

for any vector x ∈ R2. Therefore,

projection〈v〉⊥(x) =

(

x · v⊥

|v|2

)

v⊥.

8.2 parallel projection

If we take any vector v ⊂ Rn and an (n − 1)-dimensional subspace W with v < W, then

every vector x ∈ Rn has a unique representation as

x = av + w (43)
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for some scalar a and some w ∈ W. The proof of this fact is as follows:

First notice that span({v} ∪ W) is an n-dimensional subspace of Rn. Therefore this

subspace is Rn and every vector x ∈ Rn can be expressed in the form indicated in (43).

Notice that the intersection of span(v) = 〈v〉 and W is {0}. In fact, if cv ∈ W, then either

c = 0 or (1/c)(cv) = v ∈ W (which is a contradiction). On the other hand, if

x = av + w = ãv + w̃

for some scalar ã and some w̃ ∈ W, then

(a − ã)v = w̃ − w

so this vector is clearly in the intersection 〈v〉 ∩W. �

The vector w in (43) is the parallel projection of x onto the subspace W parallel to v.

In the case where n = 2, so that v ∈ R2, the n − 1 = 1 dimensional subspace is spanned

by a single vector w. Consequently, the parallel projection of x onto 〈w〉 parallel to v is

given by a linear function L : R2 → R2 with dim ker(L) = 1 and formula

Lx = bw where x = av + bw.

If we assume also that |v| = |w| = 1, then we obtain the system of equations

{

a + v · w b = x · v
v · w a + b = x · w

for a and b.

Exercise 59 Use Cramer’s rule to find formulas for a and b to conclude

Lx = x · w − (v · w) v

1 − (v · w)2
w.

If we compute |w − (v · w) v|2, we find the value to be

|w − (v · w) v|2 = 1 − (v · w)2.

Therefore, the unit vector

u =
w − (v · w) v
√

1 − (v · w)2
= ±v⊥
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and

Lx = comp
u

x
1

√

1 − (v · w)2
w

= (proj
u

x · u) α w

where the scaling factor α is given by

α =
1

√

1 − (v · w)2
.

Thus, as discussed above, parallel projection in R2 is a scaling of orthogonal projection.

Exercise 60 When is u = v⊥?

Exercise 61 Review/evaluate the assertion that when L : R2 → R2 is linear and satisfies

dim ker(L) = 1, then L is (essentially) a scaling of a projection.

Exercise 62 Describe the eigenvalues associated with an orthogonal projection and a par-

allel projection.

8.3 scaling (isotropic)

If L : Rn → Rn by Lx = αx, then either dim ker(L) = 0 (when α , 0) or dim ker(L) = n. If

B = {v1, v2, . . . , vn} is any basis, then the matrix of L with respect to this basis is

αI

where I is the n × n identity matrix. Notice that

v1 =



































1

0
...

0



































B

7→



































α

0
...

0



































B

= αv1

is the first column of the matrix (and the other columns are obtained similarly).

For an isotropic scaling every vector is an eigenvector.

8.4 scaling (anisotropic)
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