Math 6701, Exam 2: Name/Section:

1. (4.8.16) Here is a table of data for a function which is theoretically predicted to have
the form f(z) = ax?.

r |[12[13[14[18[21]22
Ffx) 26| 3 [33[48[6.1]65

We wish to find the best power p and coefficient a.

(a) (5 points) Compile a table of values of In(az?) as a function of In(z). You do not
need to find decimal approximations. For example, when { = In(1.2), then the
corresponding value is In(2.6) ~ In(a(1.2)7).

¢ | In(1.2)

9(€) | In(2.6)

(b) (5 points) Formulate a linear algebra problem whose solution would be the vector
(Ina,p)? if there was a perfect fit. In other words, find a matrix A and a vector b

such that
A ( Ina ) h
b

if it were the case that 2.6 = a(1.2)P, 3 = a(1.3)?, and so on.



Name and section:

(c¢) (5 points) Does the problem you formulated in part (b) have a solution? (Justify
your answer. You may wish to use the following numerical apprximations (correct
to four places):

In(3.3/2.6)/In(1.4/1.2) ~ 1.5466,
In(3/2.6)/In(1.3/1.2) ~ 1.7878.

(d) (10 points) Using the matrix A you defined in part (b), formulate a linear algebra
problem which has a solution and gives the best fit values Ina and p. (You do not

need to solve the problem on this exam, but describe the solution in terms of A and
b.)

Solution:

(a) This is easy:

¢ | In(1.2) | In(1.3) | In(1.4) | In(1.8) | In(2.1) | In(2.2)
g(&) | In(2.6) | In(3) | In(3.3) | In(4.8) | In(6.1) | In(6.5)

(b) We would like to have In(2.6) = In(a(1.2)?) = Ina+pIn(1.2), and In a+E&p = g(&)
in general. Therefore, a perfect fit would satisfy Ina + pln(1.2) = In(2.6)
Ina + pln(1.3) = In(3), etc., that is,

Y

1 In(1.2) In(2.6)
L | (1 (3
1 In(18) ( p ): In(4.8)
1 In(2.1) In(6.1)
1 In(2.2) In(6.5)

(¢) This problem has no solution. The first three rows of the coefficient matrix
reduce as follows:

1 In(1.2) In(2.6) In(1.2) In(2.6)

1
0 In(1.3/12) In(3/26) | — [ 0 1  In(3.2/2.6)/In(1.3/1.2)
0 In(1.4/1.2) In(3.3/2.6) 0 1 In(3.3/2.6)/In(1.4/1.2)

1 In(1.2) In(2.6)
— [0 1 1m(32/26)/In(1.3/1.2)
0 0  In(3.3/2.6)/In(1.4/1.2) — In(3.2/2.6)/In(1.3/1.2)

The last equation is inconsistent by the stated approximations.




Name and section:

(d) Given A and b as defined in part (b), the least squares approximate solution of
the problem stated in (b) is the solution of

AT A ( Z ) — ATh,

or
( ) ) = (ATA)1A"D,

and we take coefficient a = e* and power p.




Name and section:

2. (25 points) (8.2.29) The water in a lake has reached a 90% contamination level. Pure
water is pumped into the lake at 1000 liters per minute, and the lake overflows into a
stream at the same rate. Let p = p(t) denote the contaminant in the lake as a function
of time. Assume the water entering the stream contains p(t)/10'° contaminant per liter,
and determine how long it will take for the stream to run with 50% contaminant.

Solution: The contaminant satisfies

1P

* - _ 9
o 10 101 and  p(0) = (9)10°.

This tells us p(t) = (9)109)e~t/10".
We want to know when this quantity is 10'°/2. That is, when
t=—10"1n(5/9).

This is in minutes. So that would be a little over 11 years.




Name and section:

3. (25 points) (8.6.33) An undamped oscillator L]y] = y"” + y is driven at frequency w by
the forcing term f(t) = cos(wt). We say the forcing is at the resonant frequency if the
resulting motion is unbounded. What is the resonant freqency? (Justify your answer.)

Solution: The general solution of the associated homogeneous ODE is
yn(z) = acost + bsint.

This function is clearly bounded. If w # 1, we can find a particular solution of the
form y, = Acoswt + Bsinwt which will also be bounded. Thus, the only possible
resonant frequency is w = 1. In that case,

y =acost + bsint +t(Acost + Bsint)

which will certainly be unbounded regardless of the choice of A and B (since they
can’t both be zero).




Name and section:

4. (25 points) (8.11.7) A damped oscillator L[y] = ¢ + v’ + y is set in motion with

2 57 1 5
y(0) = e and  y(0) = — e,

V3 V3

and experiences a unit impulse at time ¢ = 57/v/3. Describe the resulting motion y(t).

Solution: Let L[y] =Y be the Laplace transform of y. Then
2y 2 2 Ly - LBy = e
s7Y — s—e2v3 4+ —e2V3 + 5Y — —e V3 — 23
V3 V3 V3
or
9 1 s5x Brg
(s"+s+1)Y = —3em(2s+ 1) +evs”.
That is,
v _ Les&% 25 +1 L ev3
V3 (s+1/2)2+3/4  (s+1/2)2+3/4
2 57 3 2 Sls _ . 3
=il e cos—t| + —=ev5'L |e t/2SIH£t
V3 2 V3 2
2 [ = | 31 5\ (1o 3.5
— 2 leaL e‘t/2cos£t +L u(t—i)e <t ﬁ)/Qsin £15——7T
V3 I 2 ] i V3 2 2
2 = [ ] 31 5 3
= L es!c e‘t/2cos£t +L u(t—i) ~t2gin £t—I
V3 I 2 ] i V3 2 2
2 sn 3 5
= 2 3L 2 | cos £t—i—u (t — i) —cos —t
V3 i 2 V3 2
2 s 3 5
= 2 3L [et2 cos £t (1 —u (t — i))
73 2 %
Thus,
2 5
y(t) = —=e2v3e % cos ét (1 —u (t - 5—7T))
V3 2 V3
is a decaying exponential until the impulse, at which time all motion ceases, and the
system remains in equilibrium y = 0 after y = 57//3.




