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Problem 1 Recall the complex numbers are given by

C = {x+ iy : x, y ∈ R}.

(a) Show that C is a vector space over R. What is the dimension?

Usually, when we consider C as a vector space we assume it is considered as a

vector space of dimension one over C. Let us denote the vector space C as a

vector space over R by CR.

(b) Let L(C) denote the collection of all linear functions L : C→ C. You should have

characterized this collection in Problem 1 of Assignment 4. Show that L(C) is
a vector space over C. What is the dimension?

(c) Let L(CR) denote the collection of all linear functions L : CR → CR. Show that

L(CR) is a vector space over R. What is the dimension of L(CR)?

(d) Can you compare L(C) and L(CR)? Hint: Can one be realized as a subset of

the other? What happens to the algebraic properties?

Solution:

(a) We know how to add and scale complex numbers, as C is a field. If we special-
ize the scaling to scaling by reals, then clearly the algebraic properties of the
field (associative, commutative, distributive, identity, inverses, etc.) still hold.
Therefore, C is a vector field over R. A basis is given by

B = {1, i}
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as every complex number x + iy (with x, y ∈ R can be written as a linear
combination of these two complex numbers:

x+ iy = x(1) + y(i)

with real coefficients. This means B is a spanning set. On the other hand, if
the linear combination x(1) + y(i) = 0, then we know x = y = 0. That is, the
set B is a linearly independent set. This shows the dimension of C over R is 2.

(b) Now we need to know how to add and scale linear functions L : C→ C. If L1 and
L2 are linear functions, then we define the sum (as usual) by L1 + L2 : C→ C

by
(L1 + L2)(z) = L1(z) + L2(z).

Is this function linear? Yes it is:

(L1 + L2)(az + bw) = L1(az + bw) + L2(az + bw)

= aL1z + bL1w + aL2z + bL2w

= a(L1 + L2)z + b(L1 + L2)w.

We can also scale a linear function by any a ∈ C:

(aL)(z) = aL(z)

and the result is also linear. Thus, we have addition and scaling. In particular,
(−1)L is an additive inverse for L with L+(−L) giving the zero linear function
L0 : C→ C by L0(z) ≡ 0 which is, of course, a linear function and the additive
inverse in our vector space L(C). The required algebraic properties are easy to
check:

(L1 + L2) + L3 = L1 + (L2 + L3) and (ab)L = a(bL) (associative)

L1 + L2 = L2 + L1 (commutative)

(a+ b)L = aL+ bL (distributive)

These all follow directly from the corresponding properties of C as a field. We
could write out the properties in more detail, but the main point is that linear
functions can be considered as vectors.
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Now, the interesting question: What is a basis for this vector space over C?
Actually, a set containing any nonzero element of L(C) will do, but there is one
obvious choice for a basis element which is the identity transformation

id : C→ C by id(z) = z.

As observed in the wonderful Problem 1 of Assignment 4, given any linear
function L : C→ C, we have L(z) = zL(1). This means L(z) = L(1) id(z) or

L = L(1) id .

Thus, {id} is a basis for L(C), and this vector space is one dimensional over C.

(c) Every function L(C) is also in L(CR): If a function L : C→ C satisfies

L(az + bw) = aLz + bLw

for every a, b, z, w ∈ C, then it certainly satisfies the same condition for a, b ∈ R

and z, w ∈ C. But there may be functions in L(CR) which are not in L(C).
The characterization obtained from L(z) = zL(1) certainly does not work. We
can say, however, for L ∈ L(CR) that

L(x+ yi) = xL(1) + yL(i) for every x, y ∈ R. (1)

Conversely, given any two complex numbers a11 + a21i and a12 + a22i, there is a
(unique) linear function L ∈ L(CR) given by

L(z) = L(x+iy) = x(a11+a21i)+y(a12+a22i) = xa11+ya12+i(xa21+ya22). (2)

Thus, we obtain in this way a characterization of linear functions L ∈ L(CR),
and we can ask the question: Can we add and scale such functions?

Certainly we can. If L and M are two such functions, then L + M : C → C

obtained by just adding values: (L+M)(z) = Lz +Mz is also the (real) linear
function determined by the two complex constants

L(1) +M(1) and L(i) +M(i).

Also, if L is determined by the pair (L(1), L(i)) ∈ C
2, then for any real scalar

α ∈ R, the function αL : C → C by (αL)z = αLz corresponds to the pair
α(L(1), L(i)).
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Similarly, all the vector space properties of L(CR) follow from the addition and
(real) scaling of points in C2 which is essentially eqiuvalent to the collection of
2× 2 real matrices.

One gets from this discussion the idea that L(CR) is a four dimensional vector
space over R like the 2 × 2 matrices with real entries. And indeed this is the
case: A basis for L(CR) is {L11, L12, L21, L22} where

L11(z) = Re(z)

corresponding to the two complex constants 1+0i and 0+0i or... corresponding
to the 2× 2 matrix

(

1 0
0 0

)

.

The function L11 may also be recognized as projection onto the real axis. The
second basis element L12 : C→ C by

L12(z) = Im(z)

which is clockwise rotation by π/2 (multiplication by −i) of the projection onto
the imaginary axis. The last two basis elements satisfy

L21(z) = iRe(z) and L22(z) = i Im(z).

The characterization (1-2) gives

L = Re[L(1)]L11 + Im[L(1)]L21 + Re[L(i)]L12 + Im[L(i)]L22.

Thus, {L11, L12, L21, L22} is a spanning set. In order to see {L11, L12, L21, L22}
is linearly independent and, thus, a basis, consider a linear combination

∑

i,j

aijLij = L0

where L0 ≡ 0 is the zero linear function. Then applying this transformation to
z = 1 we get

a11 + a21i = 0.

This means a11 = a21 = 0. Applying the remaining terms a12L12 + a22L22 to i
gives

a12 + ia22 = 0,

so a12 = a22 = 0. Thus, {L11, L12, L21, L22} is a basis for L(CR) over R, and the
dimension is 4.
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(d) Certainly it is true, as mentioned above, that L(C) ⊂ L(CR). However, L(CR)
is a much larger set. In particular, none of the basis elements we have taken
for L(CR) are in L(C). It may be interesting to express the elements in the basis
{id, ρ} for L(C) as linear combinations of the basis elements in {L11, L12, L21, L22}.
It is easy to see that

id = L11 + L22 and ρ = L21 − L12.

Finally, it is perhaps most informative to think of these vector spaces in terms
of real linear transformations L : R2 → R2 of the Euclidean plane (with which
we are relatively familiar) under the identificaiton x+ iy ←→ (x, y). The linear
functions in L(C) correspond precisely to the compositions of real rotations and
real isotropic scalings of R2 which, it will remembered, commute. The functions
in L(CR) correspond to all linear transformations L : R2 → R2 of the plane.

I feel as though the wording of the problem suggests some additional interesting
observation concerning the algebraic properties of L(C) as a subset of L(CR).
Ah yes, setting aside the complex scaling associated with L(C), it may be
observed that L(C) (as a set which is a subset of the real vector space L(CR))
is a subspace. This requires closure under addition, which of course holds, and
closure under real scaling, which also holds. So, in a certain sense, there is a
final question: What is the (real) dimension of L(C) as a subspace of L(CR)?
Perhaps I will save that for the final exam.
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