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Problem 1 Recall the complex numbers are given by
C={z+iy:z,y € R}.

(a) Show that C is a vector space over R. What is the dimension?

Usually, when we consider C as a vector space we assume it is considered as a
vector space of dimension one over C. Let us denote the vector space C as a
vector space over R by Cg.

(b) Let L(C) denote the collection of all linear functions L : C — C. You should have
characterized this collection in Problem 1 of Assignment 4. Show that L(C) is
a vector space over C. What is the dimension?

(c) Let L(Cg) denote the collection of all linear functions L : Cg — Cg. Show that
L(Cg) is a vector space over R. What is the dimension of L(Cg)?

(d) Can you compare L(C) and L(Cg)? Hint: Can one be realized as a subset of
the other? What happens to the algebraic properties?

Solution:

(a) We know how to add and scale complex numbers, as C is a field. If we special-
ize the scaling to scaling by reals, then clearly the algebraic properties of the
field (associative, commutative, distributive, identity, inverses, etc.) still hold.
Therefore, C is a vector field over R. A basis is given by

B={1,i}
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as every complex number z + iy (with =,y € R can be written as a linear
combination of these two complex numbers:

x4y =2(1) +y(i)

with real coefficients. This means B is a spanning set. On the other hand, if
the linear combination (1) 4+ y(i) = 0, then we know z = y = 0. That is, the
set B is a linearly independent set. This shows the dimension of C over R is 2.

(b) Now we need to know how to add and scale linear functions L : C — C. If L; and
Ly are linear functions, then we define the sum (as usual) by L; + Ly : C — C
by

(L1 + Lo)(z) = Li(2) + La(2).

Is this function linear? Yes it is:

(L1 + Ly)(az + bw) = Ly(az + bw) + Lay(az + bw)
=alqz+bLiw + aloz + bLyw
= a(L1 + LQ)Z + b(Ll + Lg)w

We can also scale a linear function by any a € C:
(aL)(z) = alL(z)

and the result is also linear. Thus, we have addition and scaling. In particular,
(—1)L is an additive inverse for L with L+ (—L) giving the zero linear function
Ly : C — C by Lo(z) = 0 which is, of course, a linear function and the additive

inverse in our vector space £(C). The required algebraic properties are easy to
check:

(Ly + L) + Ly = Ly + (Lo + L3) and (ab)L = a(bL) (associative)
Li+Ly=1Ly+ L, (commutative)

(a+0b)L =al +bL (distributive)

These all follow directly from the corresponding properties of C as a field. We
could write out the properties in more detail, but the main point is that linear
functions can be considered as vectors.



Now, the interesting question: What is a basis for this vector space over C?
Actually, a set containing any nonzero element of £(C) will do, but there is one
obvious choice for a basis element which is the identity transformation

id:C—C by id(z) = 2.

As observed in the wonderful Problem 1 of Assignment 4, given any linear
function L : C — C, we have L(z) = zL(1). This means L(z) = L(1) id(z) or

L=L(1)id.
Thus, {id} is a basis for £(C), and this vector space is one dimensional over C.

(c) Every function £(C) is also in £L(Cg): If a function L : C — C satisfies
L(az +bw) = aLz + bLw

for every a, b, z,w € C, then it certainly satisfies the same condition for a,b € R
and z,w € C. But there may be functions in £(Cg) which are not in £(C).
The characterization obtained from L(z) = zL(1) certainly does not work. We
can say, however, for L € £(Cg) that

L(x 4 yi) = xL(1) + yL(7) for every z,y € R. (1)

Conversely, given any two complex numbers a1 + as17 and a5 + agot, there is a
(unique) linear function L € £(Cg) given by

L(Z) = L(:c—l—zy) = x(a11+a21i)+y(alg+aggi) = l’a11+ya12+i(l’a21+ya22). (2)
Thus, we obtain in this way a characterization of linear functions L € L(Cg),

and we can ask the question: Can we add and scale such functions?

Certainly we can. If L and M are two such functions, then L + M : C — C
obtained by just adding values: (L + M)(z) = Lz + Mz is also the (real) linear
function determined by the two complex constants

L(1) 4+ M(1) and L(7) + M(1).

Also, if L is determined by the pair (L(1), L(i)) € C?, then for any real scalar
a € R, the function aL : C — C by (aL)z = a Lz corresponds to the pair
a(L(1), L(2)).



Similarly, all the vector space properties of £(Cg) follow from the addition and
(real) scaling of points in C? which is essentially eqiuvalent to the collection of
2 x 2 real matrices.

One gets from this discussion the idea that £(Cpg) is a four dimensional vector
space over R like the 2 x 2 matrices with real entries. And indeed this is the
case: A basis for L(Cg) is {L11, L12, L1, Lo} where

Lll (Z) = Re(z)

corresponding to the two complex constants 1+0: and 0407 or... corresponding

to the 2 X 2 matrix
10
00/

The function L;; may also be recognized as projection onto the real axis. The
second basis element L5 : C — C by

L12(Z) = Il’Il(Z)

which is clockwise rotation by 7/2 (multiplication by —i) of the projection onto
the imaginary axis. The last two basis elements satisfy

Ly (2) = iRe(2) and Ly (2) = iIm(z).
The characterization (1-2) gives

Thus, {L11, L12, Loy, Lo} is a spanning set. In order to see {Li1, Lia, Loy, Lao}
is linearly independent and, thus, a basis, consider a linear combination

E aijLij = L(]
i7j

where Ly = 0 is the zero linear function. Then applying this transformation to
z =1 we get

a + agli = 0.
This means a; = as; = 0. Applying the remaining terms aj5L15 + a9oLos to ¢
gives

19 + ’iagg = 0,
SO @19 = a9y = 0. Thus, {L11, L1a, Lo1, Lao} is a basis for £(Cg) over R, and the
dimension is 4.



(d) Certainly it is true, as mentioned above, that £(C) C £(Cg). However, £(Cg)
is a much larger set. In particular, none of the basis elements we have taken
for L(Cg) are in £(C). It may be interesting to express the elements in the basis
{id, p} for L(C) as linear combinations of the basis elements in { L11, L1a, L1, Lo }.
It is easy to see that

id = L11 -+ L22 and P = L21 — L12.

Finally, it is perhaps most informative to think of these vector spaces in terms
of real linear transformations L : R* — R? of the Euclidean plane (with which
we are relatively familiar) under the identificaiton = + iy <— (z,y). The linear
functions in £(C) correspond precisely to the compositions of real rotations and
real isotropic scalings of R? which, it will remembered, commute. The functions
in £L(Cg) correspond to all linear transformations L : R* — R? of the plane.

I feel as though the wording of the problem suggests some additional interesting
observation concerning the algebraic properties of £(C) as a subset of L(Cg).
Ah yes, setting aside the complex scaling associated with £(C), it may be
observed that £(C) (as a set which is a subset of the real vector space L£(Cg))
is a subspace. This requires closure under addition, which of course holds, and
closure under real scaling, which also holds. So, in a certain sense, there is a
final question: What is the (real) dimension of £(C) as a subspace of L(Cg)?
Perhaps I will save that for the final exam.



