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Here is the statement of Problem 1 of Assignment 2:

(Boas 2.7.2) Discuss the domain of convergence of the complex alternating
harmonic power series
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Here is a detailed solution/discussion: The first thing to realize is that every power
series has a radius/disk of convergence associated1 with it. The center of expan-
sion (in this case z = 0) tells you the center of the disk. The radius r is determined
by the following:

If |z| < r, then the series converges absolutely, i.e., the series with terms
given by the absolute values of the terms in “your” series converges; if
|z| > r, then the series diverges.

As we consider this series
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the associated series of absolute values is
∞
∑

j=0

|z|j+1

j + 1
.

1When I type things in boldface here, I’m talking about an important concept which you would
do well to know about or might want to look up and study/review.
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This is, of course, a series of positive terms, and series of positive terms are
either bounded above (and convergent) or not bounded above (and divergent). This
follows from the fact that the sequence of partial sums is non-decreasing, and
consequently series of positive terms are much easier to deal with.

The series of absolute values is bounded above by the geometric series

∞
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∞
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|z|j = −1 +

∞
∑

j=0

ρj

where ρ = |z| is called the ratio for the geomtric series. The partial sum

k
∑
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is given explicitly by
k
∑

j=0

ρj =
1− ρk

1− ρ
.

(To see this, just multiply out the product

(1− ρ)

k
∑

j=0
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using the distributive property and cancel terms.) The sequence
{

1− ρk

1− ρ

}∞

k=1

(1)

has a finite limit
∞
∑

j=0

ρj
1

1− ρ

when 0 ≤ ρ < 1. We conclude that our original series converges absolutely for
|z| < 1.

Exercise 1 What happens to the sequence of partial sums when ρ > 1? What happens
to the geometric series

∞
∑

j=0

ρj

when ρ = 1?
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By the main fact concerning the disk of convergence for power series stated above
we know our series converges absolutely for |z| < 1. Also, to show the radius of
convergence is r = 1, it is enough to find one point z with |z| = 1 where the series
does not converge. Take z = −1. Then our original series becomes
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.

The series
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1
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+ · · ·

is called the harmonic series and is known to diverge to +∞. More precisely, this
is a series of positive terms with unbounded sequence of partial sums. To see this one
can group terms as follows:
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That is, the partial sum
2k+1

∑
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j

can be written as
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this means
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2
→ ∞ as k → ∞.
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Exercise 2 The particular grouping above (in which the partial sum is seen to have
groupings with sum at least 1/2) was suggested by Chris Page in office hours. Other
groupings to show the harmonic series diverges are possible. Work out the details
to obtain groupings (starting with the first term 1) so that each group in the partial
sum has sum 1. Hint: Show that starting with any term 1/m it is possible to add
additional terms 1/m+ 1, . . . 1/M such that the sum

1

m
+ · · ·

1

M
> 1.

At this point, we know the radius of convergence is r = 1. If you look at the statement
of Problem 2.7.2 in Boas, you will see that she only asks for the disk of convergence.
When you see a problem statement like mine which says “Discuss...” then, of course,
you’re looking at something more open ended. That is to say, we could stop here,
but if we go on things are going to get more difficult.

1 Convergence when |z| = 1.

We know our power series diverges for |z| > 1 and converges (absolutely) for |z| < 1.
It remains to consider points on the boundary of the unit disk. We know there is
divergence to −∞ when z = −1. The next step might be to consider z = 1. In this
case, our series becomes

∞
∑

j=0

(−1)j

j + 1
.

This is an alternating real series with terms tending to zero, and it is known that
all such series converge. To see this, it is enough to note that the partial sum

sk =
k
∑
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(−1)j
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= 1−

1
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+
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3
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4
+ · · ·+

(−1)k

k + 1

satisfies

sk−1 <
k
∑

j=0

(−1)j

j + 1
< sk−2 if k is even

and

sk−2 <

k
∑

j=0

(−1)j

j + 1
< sk−1 if k is odd.
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It follows inductively that the sequence {s2ℓ}
∞
ℓ=0

of partial sums with even indices is a
decreasing sequence which is bounded below by each partial sum with an odd index.
Similarly, the sequence {s2ℓ+1}

∞
ℓ=0

of partial sums with odd indices is an increasing
sequence which is bounded above by each partial sum with an even index. Since

s2ℓ − s2ℓ+1 =
1

2(ℓ+ 1)
→ 0 as ℓ → 0,

we conclude the sequence of partial sums, and hence the alternating series, converges.

Exercise 3 Show that the alternating harmonic power series also converges at z =
±i.

Breandan Yeats was interested in understanding what happens at the other points
of the unit circle, and eventually we were led2 to Example 3.40 on page 69 of Walter
Rudin’s classic text Principles of Mathematical Analysis. Rudin shows there that the
series we are considering converges at all points with |z| = 1 except z = −1. Rudin’s
proof applies to our series as follows:

Write
∞
∑

j=0

(−1)j
zj+1

j + 1
= −

∞
∑

j=0

(−z)j+1

j + 1
.

Note that the partial sums
k
∑

j=0

(−z)j+1

are bounded as long as z 6= −1 because

∣

∣

∣

∣

∣

k
∑
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∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1− (−z)k

1− (−z)

∣

∣

∣

∣

≤
2

|1 + z|
.

Notice that the bound M = 2/|1 + z| is a fixed positive number independent of k as
long as z is fixed with |z| = 1 and z 6= −1.

Now, we are going to use another fact, which is relatively easy to prove (and you
can look up):

2See the section “Notes” at the end of this solution.
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A series of complex numbers
∑

aj converges if and only if the correspond-
ing sequence of partial sums is Cauchy, i.e., for any ǫ > 0, there is some
index N such that

∣

∣

∣

∣

∣

k
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j=1
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ℓ
∑

j=1
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∣

∣

∣

∣

∣

< ǫ whenever k, ℓ > N .

The Cauchy condition for a sequence basically says that the terms in the sequence
“bunch up” out at the end. If a sequence is Cauchy, it is likely to converge, and for
sequences of complex numbers it will converge.

We will also use Rudin’s clever partial summation formula, or rearrangement
of terms, which in our case takes the form

k
∑

j=ℓ+1

(−z)j

j
= −

1

ℓ + 1

ℓ
∑

j=1

(−z)j +
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(

1

m
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1

m+ 1

) m
∑

j=1

(−z)j +
1

k

k
∑

j=1

(−z)j

where ℓ < k. To see Rudin’s identity, write (−z)m as

(−z)m =

m
∑

j=1

(−z)j −

m−1
∑

j=1

(−z)j .

Multiply both sides by 1/m and sum (both sides) from m = ℓ + 1 to m = k. You
should get two double sums on the right. If you shift the indices m in the second
sum, you can get Rudin’s rearrangement.

Exercise 4 Write out the details.

Finally then, we attempt to verify the Cauchy condition for our sequence of partial
sums: Let ǫ > 0 and recall that M = 2/|1 + z|. (Here we are still assuming, of
course, that z is fixed with |z| = 1 and z 6= −1.) We can find some N for which
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1/N < ǫ/(2M). Then if k, ℓ > N , we can assume k < ℓ and we have
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k
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∣

∣

∣

∣

∣

≤ M

∣

∣

∣

∣

∣

1

ℓ+ 1
+
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∑
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(

1

m
−

1
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+
1

k

∣

∣

∣

∣

∣

=
2M

ℓ+ 1

<
2M

N
< ǫ.

This shows that the alternating harmonic power series converges for every z on
the unit circle in C except z = −1. This settles the question of convergence versus
divergence. However, one may also be interested in the actual values taken by the
series as well.

Exercise 5 Use Rudin’s approach to prove his Theorem 3.44: If the radius of conver-
gence of

∑

ajz
j is r = 1 and the coefficients decrease monotonically to zero satisfying

a0 ≥ a1 ≥ a2 ≥ · · · with lim
jր∞

aj = 0,

then
∑

ajz
j converges at all points on the unit circle |z| = 1 except possibly z = 1.

Exercise 6 (a) Explain why Rudin’s Theorem 3.44 gives the convergence above for
Boas’ alternating harmonic power series.

(b) Give an example of a series satisfying the hypotheses of Rudin’s Theorem 3.44
which also converges at z = 1.

2 Values

Inside the unit disk B1(0) = {z ∈ C : |z| < 1}, we can write define f : B1(0) → C by

f(z) =

∞
∑

j=0

(−1)j
zj+1

j + 1
.
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This expression, as we have seen, is also well-defined when |z| = 1 and z 6= −1. In
general, we can write

f(z) ∼
∞
∑

j=0

(−1)j
zj+1

j + 1

even when z takes values for which the series diverges. This is called formal power
series representation but should not be confused with actual representation of a
function by a power series when the series diverges.

The sum of the alternating harmonic series f(1) is ln(2) ≈ 0.69315:

Exercise 7 Find the power series expansion of ln(1 + x) with center x = 0. Then
plug in x = 1.

As suggested by Breandon Yeats, we can also compute numerically the values
around the circle (at least to get some idea).

Exercise 8 Show that whenever f(z) is defined by a convergent series

f(z) = f(z).

As a consequence we need only consider points with non-negative argument between
0 and π. Figure 1 gives a plot of computed points corresponding to

k
∑

j=0

(−1)j
zj+1

j + 1
for z = mπ/10, m = 0, 1, 2, . . . , 9 and k = 100 and k = 1000.

In Figure 2 we have added one additional point computed with z = 999π/1000. It
is purple and was computed with k = 100000.

Many of the computations gave accuracy complaints, but I’m guessing the ap-
proximations are actually not too bad. In particular, it is probably correct that the
values of f along the unit circle form a convex curve resembling a shifted inverse
secant curve, namely x = − sec y + 1 + ln 2. It is noteworthy that the asymptotic
limiting value of the imaginary part of f(z) as Arg(z) tends to π appears to tend to
π/2. I have no idea how to prove these assertions. We have plotted our calculated
points along with this curve in Figure 3.

It is virtually certain that by “continuity” the real part of f(z) tends to the limiting
value of f(−1) = −∞ as z = eiθ tends to eiπ = −1. I haven’t proved this either, but
maybe you can.
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Figure 1: The points for f(0) and f(eiπ/4) are computed with 100,001 terms of the
series and are shown in red. The points in blue are computed with 101 terms of the
series, and the points in green are computed with 1001 terms. As you can see, there
is not much movement from the blue to the green to the red, so we probably have a
reasonable numerical representation of the values.

Postscript

When I wrote above “I have no idea how to prove these assertions,” it was true enough.
After sleeping on it...I guess for a couple nights...it occured to me that perhaps I
might know how to verify at least some of these assertions. In fact it is, more or less,
obvious that one has an explicit formula for the function f(z) and can answer just
about any question concerning the values of Boas’ alternating harmonic power series.
The answer is so surprising, beautiful, and fundamental that I’m surprised it is not
mentioned in, for example, baby Rudin. Maybe it is, but I haven’t seen it.

It occurs to me that this is a very good opportunity for you to learn and appreciate
several interesting aspects of complex analysis. So I’m not going to tell you the
“obvious” observation which tells you everything, but I’ll leave you with a couple hints
and Figure 4. Hints: Think carefully about Exercise 7 above, Chapter 2 Sections 6
and 7 of Boas, and Problem 10 of Assignment 1.
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Figure 2: Inclusion of a point corresponding to f(999π/1000).

Notes

The most informative compilation, related to this problem, we found on the internet
was a post at https://mathoverflow.net/questions/49395/behaviour-of-power-series-on-thei
It was here I was reminded of the discussion in “baby” Rudin (which is what mathe-
maticians call Rudin’s Principles of Mathematical Analysis). One also finds there that
the problem has come to be phrased as “What kind of subsets of the circle ∂B1(0)
can be realized as the convergence set for a complex power series

∑

ajz
j (with radius

of convergence r = 1)?”
The following, for example, are known:

Given any closed subset A of the circle, there exists a complex power se-
ries for which A is precisely the set of points where the series converges.
(Mazurkiewicz)

Given any set A which is an Fσ set in the circle, there exists a complex
power series for which A is precisely the set of points where the series
converges. (Herzog and Piranian)

An Fσ set is one which is a countable union of closed sets. Such a set has the
form

A =

∞
⋃

j=1

Aj where Aj is a closed set for j = 1, 2, 3, . . ..

I invite you to consider how complicated such a set can be.

There is a Gδ set which is not a set of convergence. (T.W. Körner)
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Figure 3: Image points along with Re(z) = 1 + ln 2− sec Im(z).

A Gδ is a bf countable intersection of open sets:

A =
∞
⋂

j=1

Uj where Uj is an open set for j = 1, 2, 3, . . ..

And here is an open question:

Is every Gδσ set of Lebesgue measure zero precisely the set of divergence
points of some complex power series.

As you may have guessed, a Gδσ is a countable union of countable intersections of
open sets:

∞
⋃

j=1

(

∞
⋂

k=1

Ujk

)

.

Many interesting mathematicians have thought about this kind of problem includ-
ing Ted Kazcynski, the unibomber (who wrote his thesis at Berkeley under one of the
authors, Piranian and Herzog, of the seminal papers on the subject), Paul Erdős (see
the 1993 movie N is a Number), Yitzhak Katznelson (who wrote the wonderful and
famous book An Introduction to Harmonic Analysis), and T.W. Körner (who wrote
the book Fourier Analyis and has been called the best mathematical expositor of all
time).
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Figure 4: Image points along with the actual image curve determined by f(z).
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