
Math 6341, Final Exam Name and section:

1. (25 points) Solve the initial value problem{
(1 + u2)(ut + ux) = 1 on R× (0,∞)
u(x, 0) = u0(x).

Solution: Dividing both sides of the equation by the positive quantity (1 + u2),
the characteristic equation reads ξ′(t) = (1, 1). That is, ξ(t) = x0 + t. Along the
characteristics, we have

d

dt
u(x0 + t, t) =

1

(1 + u(x0 + t, t)2)
.

That is,
1

3
u(x0 + t, t)3 + u(x0 + t, t) =

1

3
u0(x0)

3 + u0(x0) + t.

Replacing x0 with x− t, we have

1

3
u(x, t)3 + u(x, t) =

1

3
u0(x− t)3 + u0(x− t) + t.

Finally, noting that the function φ(f) = f 3/3+f has φ′ ≥ 1, this function has a well
defined real smooth inverse. In fact,

φ−1(p) = 3

√
2√

4 + 9p2 − 3p
−

3

√√
4 + 9p2 − 3p

2
.

Thus,

u(x, t) = 3

√
2√

4 + 9[u0(x− t)3/3 + u0(x− t) + t]2 − 3[u0(x− t)3/3 + u0(x− t) + t]

−
3

√√
4 + 9[u0(x− t)3/3 + u0(x− t) + t]2 − 3[u0(x− t)3/3 + u0(x− t) + t]

2
.
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2. (25 points) Consider the IVP{
ut + uux = 0 on R× (0,∞)
u(x, 0) = u0

where

u0(x) =

{
1− x, if |x| ≤ 1
0, otherwise.

Find two distinct integral solutions.

Find the unique entropy solution.

Solution:
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3. (25 points) Let

u0(x) =

{
1− |x|, if |x| ≤ 1
0, otherwise.

Consider the following variational problem: Minimize

F [w] =

∫ b

a

[
‖w′(t)‖2

2
− αw3(t)

]
dt + u0(w(a))

over the admissible class

A =
{
w = (w1, w2, w3) ∈ C2[a, b] : w(b) = x∗}

where α is a positive constant.

(a) Find a formula w0 = w0(t;x
∗, b) for the minimizer. Hint: Consider the minimization

problem for G[w] = F [w]− u0(w(a)) first.

(b) Assume a = α = 0, and let u(x∗, t) = F [w0] be the minimum value obtained above.
Show that

u(x, t) = min
ξ∈R3

{
|x− ξ|2

2t
+ u0(ξ)

}
.
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(c) Find the Legendre transform L∗ of L(v) = ‖v‖2/2.

(d) Set H(p) = L∗(p) with L given above. Show that u(x, t) is a weak solution of the
IVP {

ut + H(Du) = 0, on R
3 × (0,∞)

u(x, 0) = u0(x).
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Solution: This is a pretty tricky problem. Let’s take it slowly and start with a
task which is implicit in part (b). There is a calculus problem there which is pretty
interesting on its own. That problem is:

Given (x, t) ∈ R3 × (0,∞) fixed, minimize

f(ξ) =
|x− ξ|2

2t
+ u0(ξ)

over ξ ∈ R3.

To get the hang of how to do such problems, it is often a good idea to consider easier
ones first, and an obvious notion of “easier” in this case is “lower dimensional.” In
accord with this strategy, let’s minimize the function f : R→ R given by

f(ξ) =
(ξ − x)2

2t
+ u0(ξ)

where we take u0 with the same definiton but domain R. Notice that

f(ξ) =

{
f0(ξ) for |ξ| ≤ 1
f1(ξ) for |ξ| ≥ 1

where

f0(ξ) =
(ξ − x)2

2t
+ 1− |ξ|

and

f1(ξ) =
(ξ − x)2

2t
.

Since 1 − |ξ| = 0 when |ξ| = 1, it is clear that f is continuous. In fact, if we put
|ξ − x|2 back in place of (ξ − x)2, these same observations would hold in the higher
dimensional case.

Now, the function f1 has a kind of strong uniform coercivity. To be precise, if
|ξ| ≥ r = max{1, |x|}, we can be sure that f(ξ) is increasing in |ξ| and f1, and hence
f , attains a minimum somewhere on the closure of Br(0).

As a special case of this coercivity property, we note that when |x| ≤ 1, the minimum
of f is always taken on the closure of B1(0) which is just [−1, 1] in this 1-D case.

We also observe that f1 has a unique global min at ξ = x with f(x) = 0 and is strictly
convex everywhere. The other function f0 is more complicated—and, in some sense,
that is where the real action is happening. First of all, f0 is differentiable for ξ 6= 0
with

f ′
0(ξ) =

ξ − x

t
− sign(ξ)
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and

f ′′
0 (ξ) =

1

t
> 0.

Thus, the only possile critical points ξ 6= 0 must satisfy

ξ = x + t sign(ξ)

and must repreesnt local minima. There is, however, the point of non-differentiability
at ξ = 0, so things are more complicated than these derivatives might suggest. To
see what’s going on, let us consider four cases.

Case a0: 0 < t ≤ x. In this case, critical points ξ < 0 are not possible since
ξ = x + t sign(ξ) < 0 would mean ξ = x− t ≥ 0.

On the other hand, f0 does have a local minimum at ξ = x+ t sign(ξ) = x+ t >
0, and it is easily checked that f ′

0(ξ) < 0 for ξ < 0. We conclude that f0 is
strictly decreasing for −∞ < ξ < x + t to a global minimum value

f0(x + t) =
t

2
+ 1− x− t = 1− x− t

2
.

The function f0 is strictly increasing for x + t < ξ < ∞. Typical behavior in
this case is indicated in Figure 1.

Case b0: 0 ≤ x ≤ t.

Case c0: −t ≤ x ≤ 0.

Case d0: x ≤ −t < 0.


