
Math 6342, Exam 2 (practice) Name and section:

1. (20 points) (Weak/Strong Solutions) Let {aij} be a collection of bounded coefficients,
f ∈ L2(Ω), and u ∈ H1

0 (Ω). Show that if

∫

∑

aijDjuDiη =

∫

fη ∀ η ∈ C∞

c (Ω)

Then
∫

∑

aijDjuDiv =

∫

fv ∀ v ∈ H1
0 (Ω).

Solution: Since H1
0 is the closure of C∞

c , there is a sequence ηk → v (in the H1

norm), i.e.,
|ηk − v|H1 → 0 as k → ∞.

Therefore, letting M = sup |aij | with the sup taken over all i, j, and x ∈ Ω, we have

∣

∣

∣

∣

∫

∑

aijDjuDiηk −

∫

∑

aijDjuDiv

∣

∣

∣

∣

≤ M
∑

∫

|Dju||Diηk − Div|

≤ M
∑

i,j

|Dju|L2|Diηk − Div|L2

≤ M
∑

j

|Dju|L2

∑

i

|Diηk − Div|L2

≤ M |u|H1|ηk − v|H1

→ 0 as k → ∞.

Similarly,

∣

∣

∣

∣

∫

fηk −

∫

fv

∣

∣

∣

∣

≤ |f |L2|ηk − v|L2

≤ |f |H1|ηk − v|H1

→ 0 as k → ∞.

Thus,

∫

∑

ai,jDjuDiv = lim
k→∞

∫

∑

ai,jDjuDiηk

lim
k→∞

∫

fηk

∫

fv.
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2. (20 points) Prove Reisz’ lemma in Hilbert space: If W is a proper closed subspace of
the Hilbert space H, then there is a vector ξ ∈ H with ‖ξ‖ = 1 = dist(ξ, W ).

Give an example showing the condition that W is closed is needed in Reisz’ result.

Solution: Since W is closed and proper, the orthogonal complement of W is a
nontrivial subspace of H. Let ξ be an element of the unit ball in W⊥. For any
w ∈ W we have

‖ξ − w‖ =
√

‖ξ‖2 − 2〈ξ, w〉+ ‖w‖2

=
√

‖ξ‖2 + ‖w‖2

≥ ‖ξ‖

= 1.

Therefore, dist(ξ, W ) ≥ 1. On the other hand, 0 ∈ W and ‖ξ − 0‖ = 1, so
dist(ξ, W ) ≤ 1.

For the second part, take H = L2[0, 1] and W to be the proper subspace of polyno-
mials (or trigonometric polynomials). In this case, W is known to be dense in H.
That is, for any ξ ∈ H, we have dist(ξ, W ) = 0.
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3. (20 points) (solution operator)

(i) What is the form of a general divergence form second order linear partial differential
operator?

(ii) What is the Dirichlet problem for a linear partial differential operator?

(iii) Given a linear partial differential operator L (as you have defined above) define
what it means for u ∈ H1

0 to be a solution of the zero (homogeneous) boundary
values Dirichlet problem for L.

Solution:

(i) The form of a general divergence form second order linear partial differential
operator is

Lu = −
∑

i,j

Di(aijDju) +
∑

j

bjDju + cu

where the natural/classical domain for L is C2(U) on some open set U ⊂ Rn,
and the coefficients aij , bj and c are all continuous functions on ⊓̄ with the
aij ∈ C1(U) and symmetric.

(ii) The Dirichlet problem for L is

{

Lu = f on U
u∣
∣

∂U

= g

where g ∈ C0(∂U) is given.

(iii) u ∈ H1
0 (U) is a weak solution of

{

Lu = f on U
u∣
∣

∂U

= 0

if B(u, φ) = 〈f, φ〉L2(U) for all φ ∈ C∞

c (U) where B : H1
0(U) × H1

0 (U) → R is a
bilinear form given by

B(u, v) =
∑

ij

∫

U

aijDjuDiv +
∑

j

∫

U

bjDjuv +

∫

U

cuv

with Dju and Div representing first order weak derivatives of u and v respec-
tively.
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The next two problems concern the linear partial differential operator

Lu = −
∑

i,j

Di(aijDju)

with {aij} ∈ C∞

c (U) ∩ C0(Ū) a collection of smooth coefficients.

4. (20 points) (solution operator)

(i) Show there is a linear operator Λ which assigns to each f ∈ L2(U) the unique (weak)
solution u ∈ H1

0 (U) of the Dirichlet problem for L (with zero boundary values).

(ii) It is clear that the compact operator Λ̃ : L2 → L2 given by composing the natural
compact embedding of H1

0 (U) into L2(U) on the solution operator is one-to-one but
not onto simply because H1

0 6= L2. Show that a compact operator Λ̃ : H → H̃ of
infinite dimensional Hilbert spaces is never one-to-one and onto. (Hint: Read the
proof that 0 is in the resolvent spectrum on page 727 of Evans’ book.)

Solution:

(i) According to the Lax-Milgram theorem, we only need to show that B(u, v) =
∑
∫

aijDjuDiv is bounded and coercive. In fact,

|B(u, v)| ≤
∑

∫

|aij||Dju||Div|

≤ A
∑

ij

‖Dju‖L2‖Div‖L2

≤ A

(

∑

j

‖Dju‖L2

)(

∑

i

‖Div‖L2

)

≤ A‖u‖H1‖v‖H1.

where
A = sup

i,j,x

|aij(x)| < ∞.

To see coercivity, we need the Poincaré inequality for u ∈ H1
0 (U) which says

there is some C > 0 for which

‖u‖L2(U) ≤ C‖Du‖L2(U).
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Then we see

B(u, u) ≥ ǫ0

∫

|Du|2

=
ǫ0

2

∫

|Du|2 +
ǫ0

2

∫

|Du|2

≥
ǫ0

2

∫

|Du|2 +
ǫ0

2C

∫

|u|2

≥ min
{ǫ0

2
,

ǫ0

2C

}

(
∫

|Du|2 +

∫

|u|2
)

≥ m‖u‖H1

for some m > 0.

(ii) Assume Λ̃ is one-to-one and onto. Then the identity mapping I : H → H can
be written as I = Λ̃−1 ◦ Λ̃. We claim first that I is compact. To see this,
let uj be a bounded sequence in H. Then there is a convergent subsequence
Λ̃(ujk

) = vk → v in H̃. By the open mapping theorem Λ̃−1 is a bounded
linear operator, so I(ujk

) = Λ̃−1(vk) also converges to Λ̃−1(v). Therefore, I is
compact.

On the other hand, in an infinite dimensional Hilbert space, we can take {uj} to
be an orthonormal sequence with ‖I(uj)−I(uk)‖

2 = ‖uj−uk‖
2 = 2. Therefore,

it is impossible to find a convergent subsequence of {I(uj}, and we have a
contradiction.
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5. (20 points) (solution operator)

(i) Show that the solution operator from the previous problem can be generalized: For
each ℓ ∈ H∗ where H = H1

0 (U), there is a unique u ∈ H such that

B(u, v) = ℓ(v) for all v ∈ H

where B is the bilinear form associated with L.

(ii) Show that the solution operator Λ : H∗ → H for the generalized problem is one-to-
one and onto. Why does this not contradict the result of problem 4(ii)?

Solution:

(i) The application of the Lax-Milgram theorem works for any ℓ ∈ H∗; we just need
L to be bounded and coercive, which we have in this case since only the top
order terms are included.

(ii) If u = Λ(ℓ) = Λ(ℓ̃), then ℓ(v) = B(u, v) = ℓ̃(v) for all v ∈ H. This means that ℓ

and ℓ̃ are the same functional. Hence, Λ is one-to-one.

Let u ∈ H. Then ℓ(v) = B(u, v) =
∑

aijDjuDiv defines a bounded linear
functional on H. That is, ℓ ∈ H∗. Clearly, u is the solution of B(u, v) = ℓ(v)
for all v ∈ H, that is, Λ(ℓ) = u. so Λ is onto.

There is no contradiction because we have not shown (and it is not true) that
Λ is a compact operator.
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6. (10 points) (Bonus) Show that the solution operator Λ : L2 → H1
0 as described in

Problem 4 above is not onto.

Solution:

L2 naturally embeds in H∗ by I[f ](v) =
∫

fv = 〈f, v〉 for v ∈ H = H1
0 (U). Thus,

letting Λ̄ : H∗ → H denote the generalized solution operator of problem 5, we can
consider Λ̄ ◦ I. Since I is one-to-one and Λ̄ is one-to-one and onto, the question
reduces to showing that I is not onto, i.e., we need to find a functional ℓ ∈ H∗ which
does not come from integration against an L2 function. This is pretty easy.

Let ℓ(v) =
∫

φDjv where φ ∈ L2 is a function without a j-th weak derivative. Then
assume

ℓ(v) =

∫

fv for all v ∈ H.

That is,
∫

φDjv =

∫

fv for all v ∈ H.

In particular −f is a weak j-th derivative for φ which contradicts what we know
about φ.


