Math 6342, Exam 2 (practice)

1. (20 points) (Weak/Strong Solutions) Let $\{a_{ij}\}\$ be a collection of bounded coefficients, $f \in L^2(\Omega)$, and $u \in H_0^1(\Omega)$. Show that if

$$\int \sum a_{ij} D_j u D_i \eta = \int f \eta \qquad \forall \ \eta \in C_c^{\infty}(\Omega)$$

Then

$$\int \sum a_{ij} D_j u D_i v = \int f v \qquad \forall \ v \in H^1_0(\Omega).$$

2. (20 points) Prove Reisz' lemma in Hilbert space: If W is a proper closed subspace of the Hilbert space \mathcal{H} , then there is a vector $\xi \in \mathcal{H}$ with $\|\xi\| = 1 = \operatorname{dist}(\xi, W)$.

Give an example showing the condition that W is closed is needed in Reisz' result.

- 3. (20 points) (solution operator)
 - (i) What is the form of a general *divergence form* second order linear partial differential operator?

(ii) What is the *Dirichlet problem* for a linear partial differential operator?

(iii) Given a linear partial differential operator L (as you have defined above) define what it means for $u \in H_0^1$ to be a solution of the zero (homogeneous) boundary values Dirichlet problem for L.

The next two problems concern the linear partial differential operator

$$Lu = -\sum_{i,j} D_i(a_{ij}D_ju)$$

with $\{a_{ij}\} \in C_c^{\infty}(\mathcal{U}) \cap C^0(\overline{\mathcal{U}})$ a collection of smooth coefficients.

- 4. (20 points) (solution operator)
 - (i) Show there is a linear operator Λ which assigns to each $f \in L^2(\mathcal{U})$ the unique (weak) solution $u \in H^1_0(\mathcal{U})$ of the Dirichlet problem for L (with zero boundary values).

(ii) It is clear that the compact operator $\tilde{\Lambda} : L^2 \to L^2$ given by composing the natural compact embedding of $H_0^1(\mathcal{U})$ into $L^2(\mathcal{U})$ on the solution operator is one-to-one but not onto simply because $H_0^1 \neq L^2$. Show that a compact operator $\tilde{\Lambda} : \mathcal{H} \to \tilde{\mathcal{H}}$ of infinite dimensional Hilbert spaces is never one-to-one and onto. (Hint: Read the proof that 0 is in the resolvent spectrum on page 727 of Evans' book.)

- 5. (20 points) (solution operator)
 - (i) Show that the solution operator from the previous problem can be generalized: For each $\ell \in \mathcal{H}^*$ where $\mathcal{H} = H_0^1(\mathcal{U})$, there is a unique $u \in \mathcal{H}$ such that

 $B(u, v) = \ell(v)$ for all $v \in \mathcal{H}$

where B is the bilinear form associated with L.

(ii) Show that the solution operator $\Lambda : \mathcal{H}^* \to \mathcal{H}$ for the generalized problem is one-toone and onto. Why does this not contradict the result of problem 4(ii)?

6. (10 points) (Bonus) Show that the solution operator $\Lambda : L^2 \to H_0^1$ as described in Problem 4 above is *not* onto.