Math 6342, Exam 1 (practice) Name and section:

1. (25 points) (Hamilton-Jacobi Equation) Consider the initial value problem
ug + |ug > =0 on R x (0, 00)
u(z,0) = |z|.
(i) Write down the Hopf-Lax formula for a solution of this IVP.

(ii) Evaluate the Hopf-Lax formula and verify that it gives a solution.

Solution:
(i) The Hopf-Lax formula for this IVP is given by

u(z,t) = ?61% {tL <xT_€) + |§|}

where L = H* is the convex dual of the Hamiltonian H(p) = |p|® appearing in the
PDE. The formula for the convex dual in this case is given by

L(v) = max{pv — Ip°}.

The derivative with respect to p of the expression we need to maximize is v — 3p|p|
which vanishes for p = v/4/3|v| unless v = 0, in which case the minimum is clearly
at p = 0. The minimum value in the nontrivial case is
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Thus, the Hopf-Lax formula is
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(ii) To find this minimum, we take the derivative with respect to ¢ and attempt to

solve:
r—¢ 3
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This will be OK as long as |[£| # 0 and, in that case, |z — £| = 3¢, and the minimum
simplifies to u(z,t) = 2t+ |¢]. On the other hand, solving directly we find { = =+ 3t.
Thus, checking cases, we find the associated minima would be 2t + |z +3t| if £2 < 0.
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If |¢| = 0, then u becomes 2|z|3/2/(3+/3t). Thus, we consider cases: If x < —3t, then
we need to compare 2v/—23/(3+v/3t) with —x — t. Noting that
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vanishes only for x = —3t and —x — t is clearly smaller when t is close to zero, we
see that this must be the min value in the entire region.

The next case is —3t < z < 0. Notice that both alternatives have the same value 2¢
along the line x = —3¢. Thus, it is enough to compute

/3 N 3/2
2<x+5t—2 I>:5+i<—x) > 0.
3v/3t 3v3\ t

Similar analysis leads to the conclusion

—x —t, r < —3t
w(et) = 2v/—3/(3v/3t), —3t<x<0
) 2vad/(3VEtE), 0<ax <3t

x —1, 3t < .
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2. (25 points) (separation of variables) Solve the initial/boundary value problem for the
heat equation
uy =Au on (—1,1) x (0, 00)
u(£l,t) =0 fort >0,
u(z,0) =1—|z| for |z| < 1.

Solution: Setting u = A(z)B(t), we find separated equations A” = —AA and B’ =
—\B with boundary conditions A(£1) = 0. If A > 0, then A = a cos v/ Az+bsin v/ Az,
and the boundary conditions give a cos vV A£bsin VA = 0, or a cos VA = bsin v\ = 0.
If a # 0, then we get

2
)\:)\j:<g+j7r) for j=0,1,...

and b= 0. If a = 0, then we can assume sin VA = 0, so

A=\ =51 forj=1,2,...

In view of the B equation, we get separated variables solutions

27+1
1 71‘1‘) and  @ij(z,t) = e M sin(jrr).

uj(z,t) = e’ cos (

If A =0, then A = az + b, but then £a +b = 0, so a = b = 0, and we get no
eigenfunctions. Similarly, if A = —p < 0, then A = acosh \/ux + bsinh /uz, and

acos /i Ebsinh /i = 0 so that acos /it = 0 = bsinh ,/j1. Since cos /p1 # 0, we see
that a = 0. Then either b = 0 or u = 0. In either case, we get no eigenfunctions for

A <0.

We next try a superposition of separated variables solutions:

o 2 . 1 o 5
u(z,t) = Z aze ™" cos < ];L 7TSL’) + Zdje_%'t sin(jmx).

J=0

i=1

From the initial condition we will need

1 . 1 .
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Thus, we can try
8 — 1 1Y 27 +1
u(x,t) = — Z ‘7@_(%27“) 2 cos )+ T .
2 = (25 + 1)? 2

Convergence for all = and ¢ is clear, and it is easily checked (using term by term differ-
entiation) that u € C*°(R x (0, 00)) and satisfies the PDE. The boundary conditions
also clearly hold. It is also true that
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3. (25 points) (Fourier Transform) Consider the Cauchy problem for the wave equation on

uy = Au on R x (0, 00)
u(z,0) = up(x) for z € R,
u(x,0) =0 forz €R,

(z) = 1—|z| for|z| <1
Y= 0 for |z] > 1.

where

Let
u(§,t)

be the spatial Fourier transform of w.

v I

(i) Find an initial value problem satisfied by .
(ii) Determine u(&,1).

Solution:
(i)

A —i€x o 2~
Uy = € ¢ umc—_g u.

o BT |
21 Jzer 21 Jzer
From the initial condition for w it’s clear that 4,(£,0) = 0, but @(£,0) must be
computed. In fact,

(e, 0) = —— / (1~ ) da 52% ‘25<ei€—1)=\/;(ws§2_1)'

Thus, the initial value problem for 4 (with parameter ) is:

( att = —£2ﬂ for0 <t

6.0 =/ (=)
[ :(£,0) =0.

(ii) The solution of the ODE has the form @ = a cos £t + bsin &t. Differentiating with
respect to t and using the second initial condition, we find b = 0. The other initial

condition implies
R cosé — 1
(&, t) = \/;( & ) cos &t.

The next step would be to use the inverse Fourier transform to obtain a special case
of d’Alembert’s solution.
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4. (25 points) (5.10.2) Prove the interpolation inequality

[ules < Jull ulds

for any Lipschitz function v and any $ and v with 0 < § < v < 1.

Solution: We are asked to show
lz =& |z — &P |z —¢|

where A = (v — 3)/(1 — [3) is between 0 and 1. Equivalently, setting A = |u|. and
taking a logarithm, we need

|u(x) — u(d))
|z — &[]

Let x # £ be both fixed in U, set b = |u(x) — u(§)], ¢ = |xr — £|, and consider the
function f(p) = log(A + b/c?) for 0 < p < 1. Notice that

|u(z) = u(E)]

w— ] )+)\log <A—|—sup

log (A + sup ) < (1=X\)log <A + sup

_ —pb/cPtt bp b(AcPT +be) — bp(p + 1) AP

|| oo +sup [u(z) = u(e)] < <|u|oo + sup M)H <|u|oo + sup M)

|u

(z) —u(§)|
)
bc

f'(p) and  f"(p) = —

T A+b/er T At 4 be (Acrt! + be)?

Thus, f is convex. In particular, f((1 — \)B + ) < (1 — N)f(5) + Af(1). Since
(1 = X)B+ A\ =+, this means

|z — & |z —¢]

holds for every particular x # £. Taking the supremum of x # £ on both sides and
noting that the supremum of a product is less than or equal to the product of the
suprema of the factors, we obtain the desired inequality.

z =&’

log (A + M) < (1-)\)log (A | @) ~ “(f)|)+Mog (A | Jul@) — u(©)




