Math 6342, Exam 1 (practice)

1. (25 points) (Hamilton-Jacobi Equation) Consider the initial value problem

$$\begin{array}{l} & (u_t+|u_x|^3=0 \mbox{ on } \mathbb{R} \times (0,\infty) \end{array} \end{array}$$

- (i) Write down the Hopf-Lax formula for a solution of this IVP.
- (ii) Evaluate the Hopf-Lax formula and verify that it gives a solution.

Solution:

(i) The Hopf-Lax formula for this IVP is given by

$$u(x,t) = \min_{\xi \in \mathbb{R}^n} \left\{ tL\left(\frac{x-\xi}{t}\right) + |\xi| \right\}$$

where $L = H^*$ is the convex dual of the Hamiltonian $H(p) = |p|^3$ appearing in the PDE. The formula for the convex dual in this case is given by

$$L(v) = \max_{p} \{ pv - |p|^3 \}.$$

The derivative with respect to p of the expression we need to maximize is v - 3p|p| which vanishes for $p = v/\sqrt{3|v|}$ unless v = 0, in which case the minimum is clearly at p = 0. The minimum value in the nontrivial case is

$$L(v) = \frac{v^2}{\sqrt{3|v|}} - \frac{v^2}{3\sqrt{3|v|}} = \frac{2}{3\sqrt{3}}|v|\sqrt{|v|}.$$

Thus, the Hopf-Lax formula is

$$u(x,t) = \min_{\xi \in \mathbb{R}^n} \left\{ \frac{2t}{3\sqrt{3}} \left(\frac{|x-\xi|}{t} \right)^{3/2} + |\xi| \right\}$$
$$= \min_{\xi \in \mathbb{R}^n} \frac{2}{3\sqrt{3t}} |x-\xi|^{3/2} + |\xi|.$$

(ii) To find this minimum, we take the derivative with respect to ξ and attempt to solve:

$$-\frac{x-\xi}{\sqrt{3t|x-\xi|}} + \frac{\xi}{|\xi|} = 0$$

This will be OK as long as $|\xi| \neq 0$ and, in that case, $|x - \xi| = 3t$, and the minimum simplifies to $u(x, t) = 2t + |\xi|$. On the other hand, solving directly we find $\xi = x \pm 3t$. Thus, checking cases, we find the associated minima would be $2t + |x \pm 3t|$ if $\pm x \leq 0$.

If $|\xi| = 0$, then u becomes $2|x|^{3/2}/(3\sqrt{3t})$. Thus, we consider cases: If $x \leq -3t$, then we need to compare $2\sqrt{-x^3}/(3\sqrt{3t})$ with -x - t. Noting that

$$\frac{\partial}{\partial t}\left(-x-t-\frac{2\sqrt{-x^3}}{3\sqrt{3t}}\right) = -1 + \frac{1}{3\sqrt{3}}\left(\frac{-x}{t}\right)^{3/2}$$

vanishes only for x = -3t and -x - t is clearly smaller when t is close to zero, we see that this must be the min value in the entire region.

The next case is $-3t \le x \le 0$. Notice that both alternatives have the same value 2t along the line x = -3t. Thus, it is enough to compute

$$\frac{\partial}{\partial t}\left(x+5t-\frac{2\sqrt{-x^3}}{3\sqrt{3t}}\right) = 5 + \frac{1}{3\sqrt{3}}\left(\frac{-x}{t}\right)^{3/2} > 0.$$

Similar analysis leads to the conclusion

$$u(x,t) = \begin{cases} -x - t, & x \le -3t \\ 2\sqrt{-x^3}/(3\sqrt{3t}), & -3t \le x \le 0 \\ 2\sqrt{x^3}/(3\sqrt{3t}), & 0 \le x \le 3t \\ x - t, & 3t \le x. \end{cases}$$

2. (25 points) (separation of variables) Solve the initial/boundary value problem for the heat equation

$$\begin{cases} u_t = \Delta u & \text{on } (-1,1) \times (0,\infty) \\ u(\pm 1,t) = 0 & \text{for } t \ge 0, \\ u(x,0) = 1 - |x| & \text{for } |x| \le 1. \end{cases}$$

Solution: Setting u = A(x)B(t), we find separated equations $A'' = -\lambda A$ and $B' = -\lambda B$ with boundary conditions $A(\pm 1) = 0$. If $\lambda > 0$, then $A = a \cos \sqrt{\lambda}x + b \sin \sqrt{\lambda}x$, and the boundary conditions give $a \cos \sqrt{\lambda} \pm b \sin \sqrt{\lambda} = 0$, or $a \cos \sqrt{\lambda} = b \sin \sqrt{\lambda} = 0$. If $a \neq 0$, then we get

$$\lambda = \lambda_j = \left(\frac{\pi}{2} + j\pi\right)^2$$
 for $j = 0, 1, \dots$

and b = 0. If a = 0, then we can assume $\sin \sqrt{\lambda} = 0$, so

$$\lambda = \tilde{\lambda}_j = j^2 \pi^2$$
 for $j = 1, 2, \dots$

In view of the B equation, we get separated variables solutions

$$u_j(x,t) = e^{-\lambda_j t} \cos\left(\frac{2j+1}{2}\pi x\right)$$
 and $\tilde{u}_j(x,t) = e^{-\tilde{\lambda}_j t} \sin(j\pi x).$

If $\lambda = 0$, then A = ax + b, but then $\pm a + b = 0$, so a = b = 0, and we get no eigenfunctions. Similarly, if $\lambda = -\mu < 0$, then $A = a \cosh \sqrt{\mu}x + b \sinh \sqrt{\mu}x$, and $a \cos \sqrt{\mu} \pm b \sinh \sqrt{\mu} = 0$ so that $a \cos \sqrt{\mu} = 0 = b \sinh \sqrt{\mu}$. Since $\cos \sqrt{\mu} \neq 0$, we see that a = 0. Then either b = 0 or $\mu = 0$. In either case, we get no eigenfunctions for $\lambda < 0$.

We next try a superposition of separated variables solutions:

$$u(x,t) = \sum_{j=0}^{\infty} a_j e^{-\lambda_j t} \cos\left(\frac{2j+1}{2}\pi x\right) + \sum_{j=1}^{\infty} \tilde{a}_j e^{-\tilde{\lambda}_j t} \sin(j\pi x).$$

From the initial condition we will need

$$a_j \int_{-1}^{1} \cos^2\left(\frac{2j+1}{2}\pi x\right) \, dx = \int_{-1}^{1} (1-|x|) \cos\left(\frac{2j+1}{2}\pi x\right) \, dx$$

and

$$\tilde{a}_j \int_{-1}^1 \sin^2\left(\frac{2j+1}{2}\pi x\right) \, dx = \int_{-1}^1 (1-|x|) \sin(j\pi x) \, dx = 0.$$

That is,

$$a_j = \frac{8}{(2j+1)^2 \pi^2}$$

Thus, we can try

$$u(x,t) = \frac{8}{\pi^2} \sum_{j=0}^{\infty} \frac{1}{(2j+1)^2} e^{-\left(\frac{2j+1}{2}\right)^2 \pi^2 t} \cos\left(\frac{2j+1}{2}\pi x\right).$$

Convergence for all x and t is clear, and it is easily checked (using term by term differentiation) that $u \in C^{\infty}(\mathbb{R} \times (0, \infty))$ and satisfies the PDE. The boundary conditions also clearly hold. It is also true that

$$\frac{8}{\pi^2} \sum_{j=0}^{\infty} \frac{1}{(2j+1)^2} \cos\left(\frac{2j+1}{2}\pi x\right) = 1 - |x|.$$

3. (25 points) (Fourier Transform) Consider the Cauchy problem for the wave equation on R:

$$\begin{cases} u_{tt} = \Delta u \quad \text{on } \mathbb{R} \times (0, \infty) \\ u(x, 0) = u_0(x) \quad \text{for } x \in \mathbb{R}, \\ u_t(x, 0) = 0 \quad \text{for } x \in \mathbb{R}, \end{cases}$$

where

$$u_0(x) = \begin{cases} 1 - |x| & \text{for } |x| \le 1\\ 0 & \text{for } |x| \ge 1. \end{cases}$$

Let

$$\hat{u}(\xi,t) = \frac{1}{\sqrt{2\pi}} \int_{x \in \mathbb{R}} e^{-i\xi x} u(x)$$

be the spatial Fourier transform of u.

- (i) Find an initial value problem satisfied by \hat{u} .
- (ii) Determine $\hat{u}(\xi, t)$.

Solution:

(i)

$$\hat{u}_{tt} = \frac{1}{\sqrt{2\pi}} \int_{x \in \mathbb{R}} e^{-i\xi x} u_{tt} = \frac{1}{\sqrt{2\pi}} \int_{x \in \mathbb{R}} e^{-i\xi x} u_{xx} = -\xi^2 \hat{u}.$$

From the initial condition for u it's clear that $\hat{u}_t(\xi, 0) = 0$, but $\hat{u}(\xi, 0)$ must be computed. In fact,

$$\hat{u}(\xi,0) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-i\xi x} (1-|x|) \, dx = \frac{1}{\xi^2 \sqrt{2\pi}} e^{-i\xi} \left(e^{i\xi} - 1 \right) = \sqrt{\frac{2}{\pi}} \left(\frac{\cos \xi - 1}{\xi^2} \right).$$

Thus, the initial value problem for \hat{u} (with parameter ξ) is:

$$\begin{cases} \hat{u}_{tt} = -\xi^2 \hat{u} & \text{for } 0 < t \\ \hat{u}(\xi, 0) = \sqrt{\frac{2}{\pi}} \left(\frac{\cos \xi - 1}{\xi^2}\right) \\ \hat{u}_t(\xi, 0) = 0. \end{cases}$$

(ii) The solution of the ODE has the form $\hat{u} = a \cos \xi t + b \sin \xi t$. Differentiating with respect to t and using the second initial condition, we find b = 0. The other initial condition implies

$$\hat{u}(\xi,t) = \sqrt{\frac{2}{\pi}} \left(\frac{\cos\xi - 1}{\xi^2}\right) \cos\xi t.$$

The next step would be to use the inverse Fourier transform to obtain a special case of d'Alembert's solution.

4. (25 points) (5.10.2) Prove the interpolation inequality

$$|u|_{C^{\gamma}} \le |u|_{C^{\beta}}^{\frac{1-\gamma}{1-\beta}} |u|_{C^{0,1}}^{\frac{\gamma-\beta}{1-\beta}}$$

for any Lipschitz function u and any β and γ with $0 < \beta < \gamma \le 1$.

Solution: We are asked to show $|u|_{\infty} + \sup \frac{|u(x) - u(\xi)|}{|x - \xi|^{\gamma}} \leq \left(|u|_{\infty} + \sup \frac{|u(x) - u(\xi)|}{|x - \xi|^{\beta}}\right)^{1-\lambda} \left(|u|_{\infty} + \sup \frac{|u(x) - u(\xi)|}{|x - \xi|}\right)^{1-\lambda}$ where $\lambda = (\gamma - \beta)/(1 - \beta)$ is between 0 and 1. Equivalently, setting $A = |u|_{\infty}$ and taking a logarithm, we need $\log \left(A + \sup \frac{|u(x) - u(\xi)|}{|x - \xi|^{\gamma}}\right) \leq (1 - \lambda) \log \left(A + \sup \frac{|u(x) - u(\xi)|}{|x - \xi|^{\beta}}\right) + \lambda \log \left(A + \sup \frac{|u(x) - u(\xi)|}{|x - \xi|}\right)$. Let $x \neq \xi$ be both fixed in \mathcal{U} , set $b = |u(x) - u(\xi)|$, $c = |x - \xi|$, and consider the function $f(p) = \log(A + b/c^p)$ for 0 . Notice that $<math>f'(p) = \frac{-pb/c^{p+1}}{A + b/c^p} = -\frac{bp}{Ac^{p+1} + bc}$ and $f''(p) = -\frac{b(Ac^{p+1} + bc) - bp(p+1)Ac^p}{(Ac^{p+1} + bc)^2} = \frac{b^2c}{(Ac^{p+1} + bc)^2} \geq$ Thus, f is convex. In particular, $f((1 - \lambda)\beta + \lambda) \leq (1 - \lambda)f(\beta) + \lambda f(1)$. Since $(1 - \lambda)\beta + \lambda = \gamma$, this means $\log \left(A + \frac{|u(x) - u(\xi)|}{|x - \xi|^{\gamma}}\right) \leq (1 - \lambda) \log \left(A + \frac{|u(x) - u(\xi)|}{|x - \xi|^{\beta}}\right) + \lambda \log \left(A + \frac{|u(x) - u(\xi)|}{|x - \xi|}\right)$ holds for every particular $x \neq \xi$. Taking the supremum of $x \neq \xi$ on both sides and noting that the supremum of a product is less than or equal to the product of the supremu of the factors, we obtain the desired inequality.