
Math 6342, Exam 1 (practice) Name and section:

1. (25 points) (Hamilton-Jacobi Equation) Consider the initial value problem







ut + |ux|3 = 0 on R× (0,∞)

u(x, 0) = |x|.

(i) Write down the Hopf-Lax formula for a solution of this IVP.

(ii) Evaluate the Hopf-Lax formula and verify that it gives a solution.

Solution:

(i) The Hopf-Lax formula for this IVP is given by

u(x, t) = min
ξ∈Rn

{

tL

(

x − ξ

t

)

+ |ξ|
}

where L = H∗ is the convex dual of the Hamiltonian H(p) = |p|3 appearing in the
PDE. The formula for the convex dual in this case is given by

L(v) = max
p

{pv − |p|3}.

The derivative with respect to p of the expression we need to maximize is v − 3p|p|
which vanishes for p = v/

√

3|v| unless v = 0, in which case the minimum is clearly
at p = 0. The minimum value in the nontrivial case is

L(v) =
v2

√

3|v|
− v2

3
√

3|v|
=

2

3
√

3
|v|

√

|v|.

Thus, the Hopf-Lax formula is

u(x, t) = min
ξ∈Rn

{

2t

3
√

3

( |x − ξ|
t

)3/2

+ |ξ|
}

= min
ξ∈Rn

2

3
√

3t
|x − ξ|3/2 + |ξ|.

(ii) To find this minimum, we take the derivative with respect to ξ and attempt to
solve:

− x − ξ
√

3t|x − ξ|
+

ξ

|ξ| = 0.

This will be OK as long as |ξ| 6= 0 and, in that case, |x− ξ| = 3t, and the minimum
simplifies to u(x, t) = 2t+ |ξ|. On the other hand, solving directly we find ξ = x±3t.
Thus, checking cases, we find the associated minima would be 2t+ |x±3t| if ±x ≤ 0.



Name and section:

If |ξ| = 0, then u becomes 2|x|3/2/(3
√

3t). Thus, we consider cases: If x ≤ −3t, then
we need to compare 2

√
−x3/(3

√
3t) with −x − t. Noting that

∂

∂t

(

−x − t − 2
√
−x3

3
√

3t

)

= −1 +
1

3
√

3

(−x

t

)3/2

vanishes only for x = −3t and −x − t is clearly smaller when t is close to zero, we
see that this must be the min value in the entire region.

The next case is −3t ≤ x ≤ 0. Notice that both alternatives have the same value 2t
along the line x = −3t. Thus, it is enough to compute

∂

∂t

(

x + 5t − 2
√
−x3

3
√

3t

)

= 5 +
1

3
√

3

(−x

t

)3/2

> 0.

Similar analysis leads to the conclusion

u(x, t) =















−x − t, x ≤ −3t

2
√
−x3/(3

√
3t), −3t ≤ x ≤ 0

2
√

x3/(3
√

3t), 0 ≤ x ≤ 3t
x − t, 3t ≤ x.
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2. (25 points) (separation of variables) Solve the initial/boundary value problem for the
heat equation







ut = ∆u on (−1, 1) × (0,∞)
u(±1, t) = 0 for t ≥ 0,
u(x, 0) = 1 − |x| for |x| ≤ 1.

Solution: Setting u = A(x)B(t), we find separated equations A′′ = −λA and B′ =
−λB with boundary conditions A(±1) = 0. If λ > 0, then A = a cos

√
λx+b sin

√
λx,

and the boundary conditions give a cos
√

λ±b sin
√

λ = 0, or a cos
√

λ = b sin
√

λ = 0.
If a 6= 0, then we get

λ = λj =
(π

2
+ jπ

)2

for j = 0, 1, . . .

and b = 0. If a = 0, then we can assume sin
√

λ = 0, so

λ = λ̃j = j2π2 for j = 1, 2, . . .

In view of the B equation, we get separated variables solutions

uj(x, t) = e−λjt cos

(

2j + 1

2
πx

)

and ũj(x, t) = e−λ̃jt sin(jπx).

If λ = 0, then A = ax + b, but then ±a + b = 0, so a = b = 0, and we get no
eigenfunctions. Similarly, if λ = −µ < 0, then A = a cosh

√
µx + b sinh

√
µx, and

a cos
√

µ± b sinh
√

µ = 0 so that a cos
√

µ = 0 = b sinh
√

µ. Since cos
√

µ 6= 0, we see
that a = 0. Then either b = 0 or µ = 0. In either case, we get no eigenfunctions for
λ < 0.

We next try a superposition of separated variables solutions:

u(x, t) =
∞

∑

j=0

aje
−λjt cos

(

2j + 1

2
πx

)

+
∞

∑

j=1

ãje
−λ̃jt sin(jπx).

From the initial condition we will need

aj

∫

1

−1

cos2

(

2j + 1

2
πx

)

dx =

∫

1

−1

(1 − |x|) cos

(

2j + 1

2
πx

)

dx

and

ãj

∫

1

−1

sin2

(

2j + 1

2
πx

)

dx =

∫

1

−1

(1 − |x|) sin(jπx) dx = 0.

That is,

aj =
8

(2j + 1)2π2
.
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Thus, we can try

u(x, t) =
8

π2

∞
∑

j=0

1

(2j + 1)2
e−( 2j+1

2 )
2
π2t cos

(

2j + 1

2
πx

)

.

Convergence for all x and t is clear, and it is easily checked (using term by term differ-
entiation) that u ∈ C∞(R× (0,∞)) and satisfies the PDE. The boundary conditions
also clearly hold. It is also true that

8

π2

∞
∑

j=0

1

(2j + 1)2
cos

(

2j + 1

2
πx

)

= 1 − |x|.
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3. (25 points) (Fourier Transform) Consider the Cauchy problem for the wave equation onR:






utt = ∆u on R× (0,∞)
u(x, 0) = u0(x) for x ∈ R,
ut(x, 0) = 0 for x ∈ R,

where

u0(x) =

{

1 − |x| for |x| ≤ 1
0 for |x| ≥ 1.

Let

û(ξ, t) =
1√
2π

∫

x∈R e−iξxu(x)

be the spatial Fourier transform of u.

(i) Find an initial value problem satisfied by û.

(ii) Determine û(ξ, t).

Solution:

(i)

ûtt =
1√
2π

∫

x∈R e−iξxutt =
1√
2π

∫

x∈R e−iξxuxx = −ξ2û.

From the initial condition for u it’s clear that ût(ξ, 0) = 0, but û(ξ, 0) must be
computed. In fact,

û(ξ, 0) =
1√
2π

∫

1

−1

e−iξx(1 − |x|) dx =
1

ξ2
√

2π
e−iξ

(

eiξ − 1
)

=

√

2

π

(

cos ξ − 1

ξ2

)

.

Thus, the initial value problem for û (with parameter ξ) is:



























ûtt = −ξ2û for 0 < t

û(ξ, 0) =
√

2

π

(

cos ξ−1

ξ2

)

ût(ξ, 0) = 0.

(ii) The solution of the ODE has the form û = a cos ξt+ b sin ξt. Differentiating with
respect to t and using the second initial condition, we find b = 0. The other initial
condition implies

û(ξ, t) =

√

2

π

(

cos ξ − 1

ξ2

)

cos ξt.

The next step would be to use the inverse Fourier transform to obtain a special case
of d’Alembert’s solution.
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4. (25 points) (5.10.2) Prove the interpolation inequality

|u|Cγ ≤ |u|
1−γ
1−β

Cβ |u|
γ−β
1−β

C0,1

for any Lipschitz function u and any β and γ with 0 < β < γ ≤ 1.

Solution: We are asked to show

|u|∞+sup
|u(x) − u(ξ)|

|x − ξ|γ ≤
(

|u|∞ + sup
|u(x) − u(ξ)|

|x − ξ|β
)1−λ (

|u|∞ + sup
|u(x) − u(ξ)|

|x − ξ|

)λ

where λ = (γ − β)/(1 − β) is between 0 and 1. Equivalently, setting A = |u|∞ and
taking a logarithm, we need

log

(

A + sup
|u(x) − u(ξ)|

|x − ξ|γ
)

≤ (1−λ) log

(

A + sup
|u(x) − u(ξ)|

|x − ξ|β
)

+λ log

(

A + sup
|u(x) − u(ξ)|

|x − ξ|

)

.

Let x 6= ξ be both fixed in U , set b = |u(x) − u(ξ)|, c = |x − ξ|, and consider the
function f(p) = log(A + b/cp) for 0 < p ≤ 1. Notice that

f ′(p) =
−pb/cp+1

A + b/cp
= − bp

Acp+1 + bc
and f ′′(p) = −b(Acp+1 + bc) − bp(p + 1)Acp

(Acp+1 + bc)2
=

b2c

(Acp+1 + bc)2
≥

Thus, f is convex. In particular, f((1 − λ)β + λ) ≤ (1 − λ)f(β) + λf(1). Since
(1 − λ)β + λ = γ, this means

log

(

A +
|u(x) − u(ξ)|

|x − ξ|γ
)

≤ (1−λ) log

(

A +
|u(x) − u(ξ)|

|x − ξ|β
)

+λ log

(

A +
|u(x) − u(ξ)|

|x − ξ|

)

holds for every particular x 6= ξ. Taking the supremum of x 6= ξ on both sides and
noting that the supremum of a product is less than or equal to the product of the
suprema of the factors, we obtain the desired inequality.


