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Let

u0(x) =

{

1 − |x|, if |x| ≤ 1
0, otherwise.

Consider the following variational problem: Minimize

F [w] =

∫ b

a

[

‖w′(t)‖2

2
− αw3(t)

]

dt + u0(w(a))

over the admissible class

A =
{

w = (w1, w2, w3) ∈ C2[a, b] : w(b) = x∗
}

where α is a positive constant.

(a) Find a formula w0 = w0(t;x
∗, b) for the minimizer. Hint: Consider the

minimization problem for G[w] = F [w] − u0(w(a)) first.

(b) Assume a = α = 0, and let u(x∗, t) = F [w0] be the minimum value
obtained above. Show that

u(x, t) = min
ξ∈R3

{

|x − ξ|2

2t
+ u0(ξ)

}

.

(c) Find the Legendre transform L∗ of L(v) = ‖v‖2/2.

(d) Set H(p) = L∗(p) with L given above. Show that u(x, t) is a weak
solution of the IVP

{

ut + H(Du) = 0, on R3 × (0,∞)
u(x, 0) = u0(x).
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This is a pretty tricky problem. Let’s take it slowly and start with a
task which is implicit in part (b). There is a calculus problem there which is
pretty interesting on its own. That problem is:

Given (x, t) ∈ R3 × (0,∞) fixed, minimize

f(ξ) =
|x − ξ|2

2t
+ u0(ξ)

over ξ ∈ R3.

To get the hang of how to do such problems, it is often a good idea to
consider easier ones first, and an obvious notion of “easier” in this case is
“lower dimensional.” In accord with this strategy, let’s minimize the function
f : R → R given by

f(ξ) =
(ξ − x)2

2t
+ u0(ξ)

where we take u0 with the same definiton but domain R. Notice that

f(ξ) =

{

f0(ξ) for |ξ| ≤ 1
f1(ξ) for |ξ| ≥ 1

where

f0(ξ) =
(ξ − x)2

2t
+ 1 − |ξ|

and

f1(ξ) =
(ξ − x)2

2t
.

Since 1 − |ξ| = 0 when |ξ| = 1, it is clear that f is continuous. In fact, if we
put |ξ − x|2 back in place of (ξ − x)2, these same observations would hold in
the higher dimensional case.

Now, the function f1 has a kind of strong uniform coercivity. To be
precise, if |ξ| ≥ r = max{1, |x|}, we can be sure that f(ξ) is increasing in |ξ|
and f1, and hence f , attains a minimum somewhere on the closure of Br(0).

As a special case of this coercivity property, we note that when |x| ≤ 1,
the minimum of f is always taken on the closure of B1(0) which is just [−1, 1]
in this 1-D case.

We also observe that f1 has a unique global min at ξ = x with f(x) =
0 and is strictly convex everywhere. Since f ≥ 0, we see that this also
determines a global min for f at ξ = x whenever |x| ≥ 1.
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The other function f0 is more complicated—and, in some sense, that
is where the real action is happening. Of course, f0 is just f1, which we
understand (the graph is a parabola whose vertex is at ξ = x and has aspect
ratio determined by t with small t meaning “taller” and larger t meaning
“flatter”) with u0(ξ) added. The sum is differentiable everywhere except
ξ = 0, and f0 is differentiable from the left and right even there. In fact,

df0

dξ
(0−) = −

x

t
+ 1,

df0

dξ
(0+) = −

x

t
− 1,

and in general for ξ 6= 0

f ′

0(ξ) =
ξ − x

t
− sign(ξ)

and

f ′′

0 (ξ) =
1

t
> 0.

Since t > 0, the one sided derivatives tell us that there can never be even a
local min at ξ = 0. (If x ≥ 0, then the right derivative is negative, and if
x ≤ 0, then the left derivative is positive.)

Thus, the only possible local minimum points must be critical points
ξ 6= 0 and must satisfy

ξ = x + t sign(ξ)

In fact, any such points must represent local minima.
Note that the two “pieces” of the graph of f0 to the left and right of

ξ = 0 are both parabolas (both of the same aspect ratio as the graph of f1)
meeting continuously at ξ = 0. If the left derivative at ξ = 0 is nonpositive,
i.e., x ≥ t, then f0 has a unique global minimum at the unique critical point
on the right at ξ = x + t.

Similarly, if the derivative at ξ = 0 on the right is positive (x ≤ −t), then
f0 has a unique global minimum at ξ = x − t.

The most complicated case is when the left derivative is positive and the
right derivative is negative, i.e., there is a local max at ξ = 0, i.e., −t < x < t.
In that case, there are two local minima at ξ = x ± t, and we just have to
compare to see which one is lower. In fact, f0(x ± t) = t/2 + 1 − |x ± t|.
Since x + t > 0 and x − t < 0, we see that f0(x + t) = 1 − x − t/2 and

3



f(x − t) = 1 + x − t/2. Clearly, if the center x of the original parabola has
x > 0, then the min is on the right, and if the center is x > 0, then the min
is on the left. If x = 0, then we have the same value on each side.

So, I think we understand f0 as well as f1. It remains to analyze the
minimum when we put all this together in the conditional definition of f .
One basic question which arises is whether or not the local minima of f0

fall inside the interval |ξ| ≤ 1 or outside. This consideration leads to the
following cases.

1. 0 < t ≤ x.

(a) t ≤ 1 − x (and 0 < x < 1)

Here x + t ≤ 1, so x < 1 and the global min occurs in [−1, 1]. It
must be at ξ = x + t with value

f(x + t) = 1 − x −
t

2
.

(b) 1 − t ≤ x ≤ 1 (and 1/2 < x < 1)

Here x + t > 1, but the global min must still occur on [−1, 1].
Since f0 is nonincreasing across [−1, 1], the min must occur at
ξ = 1 with value

f(1) =
(1 − x)2

2t
.

(c) x ≥ 1

As mentioned above the min occurs at ξ = x with value

f(x) = 0.

2. 0 ≤ x ≤ t

(a) x ≤ t ≤ 1 − x (and 0 ≤ x ≤ 1/2)

In this case, x ≤ 1 so the minimum occurs in [−1, 1] and it occurs
at the right local min of f0 with value

f(x + t) = 1 − x −
t

2
.
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(b) t ≥ max{x, 1 − x} and 0 ≤ x ≤ 1.

This is probably the most complicated case. Here the absolute
min of f0 occurs outside [−1, 1] and x ≤ 1, so there is a local min
at ξ = 1, but there is another local min on the left in [−1, 1] and
ξ = x − t. We claim that the global min occurs at ξ = 1. To see
this, first note that the two values are

f(x − t) = 1 + x −
t

2
and f(1) =

(1 − x)2

2t
.

Remembering that the left and right “parts” of the graph of f0

are parts of parabolas of the same shape, we observe that

f(xt) = f0(0) −
(x − t)2

2t

while

f(1) = f0(0) −

[

(x + t)2

2t
−

(x + t − 1)2

2t

]

.

Thus, the desired inequality reduces to showing
[

(x + t)2

2t
−

(x + t − 1)2

2t

]

≥
(x − t)2

2t
.

In fact, since τ 7→ τ 2 is increasing and convex for τ ≥ 0 while
x + t − 1 ≥ 0 and 0 < t − x ≤ 1, we find

(x + t)2 − (x + t − 1)2 ≥ 12 − 02 ≥ (t − x)2 − 02.

Therefore, the minimum value is

f(1) =
(1 − x)2

2t
.

(c) x ≥ 1

In this case, the min value is

f(x) = 0.

3. −t ≤ x ≤ 0.

This is similar the case 2 above, except everything “shifts left.”
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(a) t ≤ 1 + x (and −1 < x < 0)

The global min occurs at ξ = x − t with value

f(x − t) = 1 + x −
t

2
.

(b) 1 − t ≤ x ≤ 1 (and −1 < x < −1/2)

The global min occurs at ξ = −1 with value

f(−1) =
(1 + x)2

2t
.

(c) x ≤ −1

The global min occurs at ξ = x with value

f(x) = 0.

4. 0 ≤ −x ≤ t

(a) x ≤ t ≤ 1 + x (and −1/2 ≤ x ≤ 0)

The global minimum is

f(x − t) = 1 + x −
t

2
.

(b) t ≥ max{−x, 1 + x} and −1 ≤ x ≤ 0.

The minimum value is

f(−1) =
(1 + x)2

2t
.

(c) x ≤ −1

The min value is
f(x) = 0.

At this point, we have minimized f (which took twelve cases!), and we can
reorganize and consider the minimum value as a function of (x, t) ∈ R ×
(0,∞):

u(x, t) =







1 − |x| − t/2, t ≤ u0(x)
(1 − |x|)2/(2t), t ≥ u0(x), |x| ≤ 1
0, |x| ≥ 1.

This function has some interesting properties.
In order to describe some of these properties, let us consider part (c) of

the original problem:
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Find

L∗(p) = sup
v∈Rn

(

p · v −
|v|2

2

)

,

This is relatively easy in any dimension. It is, again, a finite dimensional
calculus problem. Fortunately, this problem doesn’t involve u0! Critical
points are easy to find:

D

(

p · v −
|v|2

2

)

= p − v and D2

(

p · v −
|v|2

2

)

= −I.

Thus, there is a unique max at v = p, and

L∗(p) = p · p −
|p|2

2
=

|p|2

2
.

This completes part (c) and tells us that the IVP of part (d) is
{

ut + |Du|2/2 = 0 on Rn × (0,∞)
u(x, 0) = u0(x).

(1)

When n = 1, the function we obtained above in part (b) is a piecewise smooth
piecewise solution of this problem. That’s the first interesting thing about
u.

The second thing is the regularity of u. We see that u ∈ C0(R× (0,∞)),
but there is a distinct singularity along x = 0. On the other hand, the
restriction of u to any domain which excludes x = 0 is C1. If we consider
the profile of x 7→ u(x, t), we see that as it evolves, the corner at x = 0 is
preserved, but the corners at x = ±1 are smoothed, i.e., they vanish. This
demonstrates the semi-concavity due to the uniform convexity of H (Lemma
4):

The concave corner propagates forward, but the convex corners
become C1 smooth.

This is the characteristic regularizing associated with the Hamilton-Jacobi
operator.

Next, let us return to the minimization problem of part (b) and consider
generalizing what we have done. Before increasing the dimension, let’s see
what happens if we append a linear term:

u(x, t) = min
ξ∈R {

|x − ξ|2

2t
+ u0(ξ) + mξ

}

.
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Thinking of (x, t) as fixed, we can write

f(ξ) =
(x − mt − ξ)2

2t
+ u0(ξ) + m

(

x −
t

2

)

.

Since x and t are fixed, it is evident that our previous (twelve) cases apply
to minimize this function, and we find

1. 0 < t ≤ x − mt, i.e., (1 + m)t ≤ x.

(a) t ≤ 1 − x + mt or (1 − m)t ≤ 1 − x.

The global min occurs at ξ = x − mt + t with value

f(x + (1 − m)t) = 1 − x + mt −
t

2
m

(

x −
t

2

)

.

(b) 1 − t ≤ x − mt ≤ 1.

The global min occurs at ξ = 1 with value

f(1) =
(1 − x + mt)2

2t
+ m

(

x −
t

2

)

.

(c) x − mt ≥ 1

The global min occurs at ξ = x − mt with value

f(x − mt) = 0 + m

(

x −
t

2

)

.

It is interesting that the min value does not remain zero.

2. 0 ≤ x − mt ≤ t

(a) x − mt ≤ t ≤ 1 − x + mt

The global min occurs at ξ = x − mt + t with value

f(x − mt + t) = 1 − x + mt −
t

2
+ m

(

x −
t

2

)

.

(b) t ≥ max{x − mt, 1 − x + mt} and 0 ≤ x − mt ≤ 1.

The minimum value is

f(1) =
(1 − x + mt)2

2t
+ m

(

x −
t

2

)

.
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(c) x − mt ≥ 1

In this case, the min value is

f(x) = 0 + m

(

x −
t

2

)

.

3. −t ≤ x − mt ≤ 0.

(a) t ≤ 1 + x − mt

The global min occurs at ξ = x − mt − t with value

f(x − mt − t) = 1 + x − mt −
t

2
+ m

(

x −
t

2

)

.

(b) 1 − t ≤ x − mt ≤ 1

The global min occurs at ξ = −1 with value

f(−1) =
(1 + x − mt)2

2t
+ m

(

x −
t

2

)

.

(c) x − mt ≤ −1

The global min occurs at ξ = x − mt with value

f(x − mt) = 0 + m

(

x −
t

2

)

.

4. 0 ≤ −x + mt ≤ t

(a) x − mt ≤ t ≤ 1 + x − mt

The global minimum is

f(x − mt − t) = 1 + x − mt −
t

2
+ m

(

x −
t

2

)

.

(b) t ≥ max{−x + mt, 1 + x − mt} and −1 ≤ x − mt ≤ 0.

The minimum value is

f(−1) =
(1 + x − mt)2

2t
+ m

(

x −
t

2

)

.

9



(c) x − mt ≤ −1

The min value is

f(x) = 0 + m

(

x −
t

2

)

.

We now consider dimension n = 2 for the minimization problem (b).

Lemma 1 1. If |x| ≤ 1, then f attains all minima on B1(0).

2. If |x| ≥ 1, then f has a global min at ξ = x with f(x) = 0.

Proof: Since f ≥ 0, the second assertion is obvious.
For the first assertion, observe that for each v ∈ S1 = {x ∈ R2 : |x| = 1},

there is a unique t ≥ 0 with |x + tv| = 1. Note, furthermore, that the value
of f(x + tv) = t/2. This is obviously minimized when t is least. That is,
when v is the unit vector pointing in the direction of the point on S1 closest
to x. We have shown:

When x ∈ B1(0)

min
ξ∈S2

f(ξ) =
(1 − |x|)2

2t
.

Next, we take a directional derivative in the direction v at the point ξ =
x + tv ∈ S1:

Dvf(x + tv) = Dvf1(x + tv)

where f1(ξ) = |x − ξ|2/(2t) as in the 1-D case. We find

Dvf(x + tv) = Dvf1(x + tv) = 1.

More generally, for τ ≥ t,

Dvf(x + τv) = Dvf1(x + τv) =
τ

t
≥ 1.

Thus, when |x| ≤ 1, the value of f increases along rays emanating from x and
starting on the boundary of B1(0). We have established the first assertion of
the lemma and shown that the min value does not exceed (1 − |x|)/2. 2

By the Lemma, we have reduced the overall minimization problem to that
of minimizing f0(ξ) = |x − ξ|2/(2t) + 1 − |ξ| on the closure of B1(0).
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Notice that for ξ 6= 0,

Df0(ξ) =
ξ − x

t
−

ξ

|ξ|
.

Thus, if Df0(ξ) = 0, it must be that

ξ = x + t
ξ

|ξ|
or

(

1 −
t

|ξ|

)

ξ = x.

This means ξ/|ξ| is a unit vector in the direction of x. There are two possi-
bilities:

ξ = x ± t
x

|x|
.

The corresponding values are

f0

(

x ± t
x

|x|

)

=
t

2
+ 1 − ||x| ± t|.

Thus, the critical point corresponding to ξ = x + tx/|x| always gives a lower
value.

Lemma 2 There can never be a local min at ξ = 0.

Proof: Let v be a unit vector and compute the directional derivative Dvf0(ξ)
for ξ 6= 0:

Dvf0(ξ) =

(

ξ − x

t
−

ξ

|ξ|

)

· v.

If x = 0 and we take ξ = ǫv for ǫ > 0, then we find

Dvf0(ǫv) =
(ǫv

t
− v

)

· v =
ǫ

t
− 1.

Notice that this quantity is negative for small ǫ and limits to −1. This means
that f0 is decreasing in every direction at ξ = 0, as should be expected.

If x 6= 0, we can take v = x/|x| and ξ = ǫx/|x| to find

Dvf0(ǫv) =

(

ǫv − x

t
− v

)

· v =
ǫ − |x|

t
− 1 → −

|x|

t
− 1 as ǫ ց 0.

This means that f0 is decreasing in the direction x/|x| at ξ = 0. In either
case, there can not be a local min at ξ = 0. 2

We are now ready to consider cases.
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(a) t ≤ min{|x|, 1 − |x|}

In this case, x+ tx/|x| is in the closure of B0(0) and the corresponding
value

f(x + tx/|x|) =
t

2
+ 1 − ||x| + t| = 1 − |x| −

t

2

is less than (or equal to) the minimum on ∂B1(0) which is

(1 − |x|)2

2t
.

To see this, it is enough to note that taking v = x/|x|, we have

Dvf0(v) =

(

v − x

t
− v

)

· v =
1 − |x|

t
− 1 ≥ 0

with strict inequality unless t = 1 − |x|. If we have strict inequality,
then ξ = x/|x| is not a local min. If we have equality, then 1 − |x| = t
which means x + tx/|x| = x/|x| so the values are also equal.

(b) 1 − |x| ≤ t ≤ |x| and |x| ≤ 1.

In this case, x − tx/|x| is not a local minimum point, so there is no
local min for f0 in B1(0) and the global min is

f(x/|x|) =
(1 − |x|)2

2t
.

To see that ξ = x − tx/|x| is not a local min point, let v = x/|x| and
compute Dvf0(x − tx/|x|) = −2 < 0.

(c) |x| ≥ 1.

The min value is f(x) = 0.

(d) t ≥ max{|x|, 1 − |x|} and |x| ≤ 1

In this case, the critical point for f0 at x + tx/|x| is outside B1(0).
There is (possibly) another critical point at x − tx/|x| inside B1(0). If
x − tx/|x| ∈ B1(0), we claim that it is not a local min, so the global
min occurs at ξ = x/|x| with value

f(x/|x|) =
(1 − |x|)2

2t
.
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To see this, let’s compute the Hessian at ξ = x − tx/|x|. In fact,

D2f0(ξ) =

(

1

t
−

1

|ξ|

)

I +
1

|ξ|2

(

ξ2
1 ξ1ξ2

ξ1ξ2 ξ2
2

)

Now, clearly at ξ = x − tx/|x|, in this case, the coefficient

1

t
−

1

|ξ|
< 0.

This is certainly consistent with having a local max and not a local
min, but we must check the effect of the non-identity matrix which
becomes

1 + t/|x|

(|x| + t)3

(

x2
1 x1x2

x1x2 x2
2

)

.

In fact,
〈(

x2
1 x1x2

x1x2 x2
2

) (

η1

η2

)

,

(

η1

η2

)〈

= (x1η1 + x2η2)
2 ≥ 0.

This looks like it could be a problem, but notice that if we take a di-
rection orthogonal to (x1, x2), then this term vanishes, and the identity
term gives us a negative second directional derivative. In particualar,
there is no local min at ξ = x − tx/|x|.

(e) |x| ≤ t ≤ 1 − |x| (and 0 ≤ |x| ≤ 1/2)

As in case (a) we have

f(x + tx/|x|) =
t

2
+ 1 − ||x| + t| = 1 − |x| −

t

2

It can be checked, as in one-dimension that the minimum value u(x, t)
provides a piecewise smooth piecewise solution of the Hamilton-Jacobi IVP.
The regularity can also be checked, and this is probably a good point to draw
attention to a couple theorems in Evans’ text.

Theorem 1 (Theorem 6) If H is convex and coercive and u0 is Lipschitz,
then setting L = H∗, the Hopf-Lax formula

u(x, t) = min
ξ∈Rn

{

tL

(

x − ξ

t

)

+ u0(ξ)

}

is differentiable almost everywhere and satisfies the Hamilton Jacobi IVP.
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Big Lesson 1: The Hopf-Lax formula is a way to solve (at least some)
Hamilton-Jacobi PDEs by solving a family of calculus problems. The min
values u(x, t) solve the PDE.

Note: The non-differentiability of the initial value function u0 provided a
little extra complication in our examples, but notice that the actual depen-
dence of a minimum on parameters x and t can be complicated anyway. For
example, the location of the global minimum point can change discontinu-
ously.

Theorem 2 (Lemma 3) If u0 is semiconcave, then u = u(x, t) given by the
Hopf-Lax formula will be semi-concave.

Theorem 3 (Lemma 4) If H is uniformly convex, then u = u(x, t) given by
the Hopf-Lax formula will be semi-concave.

Theorem 4 (Theorem 7) If H is smooth, convex and coercive and u0 is
Lipschitz, then there can be at most one solution.

Note: Theorem 7 does not imply the Hopf-Lax formula gives the unique
solution. But if u0 is semiconcave or H is uniformly convex, then we do
know u = u(x, t) given by the Hopf-Lax formula is the unique solution.
Research Tip 1: We have a pretty complete picture/theory if u0 is semi-
concave or H is uniformly convex. If one starts to relax either of these
assumptions, then one quickly confronts what would probably qualify as re-
search questions in the field of Hamilton-Jacobi equations.

Having completed the minimization problem (b) in two space dimensions,
we now turn to part (a).

Restricting to vector functions w = w + ǫη where w is assumed to be a
minimizer and η ∈ C∞

c [a, b]. Then we obtain a real valued function

f(ǫ) = F [w + ǫη]

with a minimum at ǫ = 0. Calculating f ′(0) = 0, we find

∫ b

a

(w′ · η′ − αη3) dt = 0.

Integrating by parts we find

∫ b

a

(−w′′ · η − αη3) dt = 0.
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and by the fundamental lemma of the calculus of variations

w′′

1 = w′′

2 = 0 and w′′

3 = −α.

Thus, w has the form







w1 = ξ1(t − b) + x∗

1

w2 = ξ2(t − b) + x∗

2

w3 = −α(t − b)2/2 + ξ3(t − b) + x∗

3

Putting this w back into F we get a function f = f(ξ1, ξ2, ξ3) of three vari-
ables:

f(ξ) =
b − a

6

[

3|ξ|2 + 6α(b − a)ξ3 + 2α2(b − a)2
]

+ u0(x
∗

1 − (b − a)ξ1, x
∗

2 − (b − a)ξ2, x
∗

3 − (b − a)ξ3 − (b − a)2/2).

Thus, we have reduced the problem to a minimization problem for the func-
tion f = f(ξ) over ξ ∈ R3.

In order to make this look a bit more like the calculus problems we have
considered above, let us first set ξ̃ = w(a). Then, we find f(ξ) becomes

... to be continued
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