
Mean Values

for solutions of the heat equation

John McCuan

October 29, 2013

The following notes are intended to address certain problems with the
change of variables and other unclear points (and points simply not covered)
from the lecture.

1 Heat Ball

The heat ball of radius r and “center” (x, t) is the set

Er(x, t) = {(ξ, τ) : τ ≤ t, Φ(x− ξ, t− τ) ≥ 1/rn}

where Φ is the fundamental solution of the heat equation, so that

Φ(x− ξ, t− τ) =
1

[4π(t− τ)]n/2
e−

|x−ξ|2

4(t−τ) .

This last expression is always largest when α = |x − ξ| = 0 corresponding
to the “core” of the heat ball. Thus, setting the exponential term to 1, the
remaining factor is increasing in τ , and we obtain a minimum value

τmin = t−
r2

4π

corresponding to points in the ball. That is,

Er(x, t) =

{

(ξ, τ) : ξ ∈ Bα(τ)(0), t−
r2

4π
≤ τ ≤ t

}
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with

α(τ) =

√

2n(t− τ) ln

(

r2

4π(t− τ)

)

which is obtained by solving for α = |x− ξ| in the equality Φ(x− ξ, t− τ) =
1/rn. Technically, the expression for α given above applies for t− r2/(4π) ≤
τ < t. On this interval, α is seen to satisfy α′′ < 0 and the value at t is taken
to be limτցt α(τ) = 0.

Notice that the “center” (x, t) is really the top center, and is on the
boundary of the heat ball.

Further analysis indicates that the widest spatial radius of the heat ball
is

α(τmax) = r

√

n

2πe

corresponding to

τmax = t−
r2

4πe
.

In particular, we observe that α = α(τ) is increasing for t − r2/(4π) ≤ τ ≤
t − r2/(4πe), and the restriction α1 of α to this interval has a well defined
inverse. Similarly, α restricted to t− r2/(4πe) ≤ τ ≤ t is decreasing and has
an inverse which will be denoted by α−1

0 .

2 The Mean Value Property

The main claim is that given a solution u ∈ C2,1(U × (0, T ]) of ut = ∆u, we
have

u(x, t) =
1

4rn

∫

(ξ,τ)∈Er(x,t)

u(ξ, τ)
|x− ξ|2

(t− τ)2
.

The primary difficulty seems to be verification of the claim in the case u ≡ 1:

Lemma 1

4 =
1

rn

∫

(ξ,τ)∈Er(x,t)

|x− ξ|2

(t− τ)2
.

The integral on the right can be reduced (see change of variables below) to
the following:

∫

(ξ,τ)∈E1(0,0)

|ξ|2

τ 2
.
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I was unable to verify that this integral is 4, though Mathematica was able
to compute it in one space dimension and said it was 4. Evans references
N. Watson, Proc. London Math. Society 26 (1973) 385—417, and I’ve read
other references, e.g., Lei Ni’s Mean Value Theorems on Manifolds which re-
fer to the result as “Watson’s mean value formula.” Watson’s paper A theory

of subtemperatures in several variables, however, does not seem to contain
a proof of the result but quotes it from A mean value theorem for the heat

equation by W. Fulks which appeared in Proc. Amer. Math. Soc. 17(i)
(1966) 6—11. Unfortunately, Fulks doesn’t seem to offer a direct computa-
tion of the integral in the lemma above either, but obtains it as a corollary
of his general argument which is along somewhat different lines.

Assuming the lemma, Evans argument (which presumably follows an ar-
gument of Watson) is as follows:

φ(r) =
1

rn

∫

(ξ,τ)∈Er(x,t)

u(ξ, τ)
|x− ξ|2

(t− τ)2

=
1

rn

∫

(ξ,τ)∈Er(0,0)

u(ξ + x, τ + t)
|ξ|2

τ 2

=

∫

(ξ,τ)∈E1(0,0)

u(x+ rξ, t+ r2τ)
|ξ|2

τ 2
.

Differentiating, we have

φ′(r) =

∫

(ξ,τ)∈E1(0,0)

Du(x+ rξ, t+ r2τ) · ξ
|ξ|2

τ 2
+ 2r

∫

(ξ,τ)∈E1(0,0)

ut(x+ rξ, t+ r2τ)
|ξ|2

τ

=
1

rn

∫

(ξ,τ)∈Er(0,0)

Du(x+ ξ, t+ τ) · ξ
|ξ|2

τ 2
+

2

rn+1

∫

(ξ,τ)∈Er(0,0)

ut(x+ ξ, t+ τ)
|ξ|2

τ
.

Next, focusing on the second term, we find

2

rn+1

∫

(ξ,τ)∈Er(0,0)

ut(x+ ξ, t+ τ)
|ξ|2

τ

=
4

rn+1

∫

(ξ,τ)∈Er(0,0)

ut(x+ ξ, t+ τ)Dψ(ξ, τ) · ξ
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where

ψ(ξ, τ) = ln [rnΦ(−ξ,−τ)]

= ln

[

(

r2

−4πτ

)n/2

e
|ξ|2

4τ

]

= n log r −
n

2
log(−4πτ) +

|ξ|2

4τ
.

In fact,

Dψ(ξ, τ) =
ξ

2τ
and ψ∣

∣

∂Er(0,0)

≡ 0. (1)

Continuing the calculation of the second term using the divergence theorem,
we find

2

rn+1

∫

(ξ,τ)∈Er(0,0)

ut(x+ ξ, t+ τ)
|ξ|2

τ

=
4

rn+1

∫

(ξ,τ)∈Er(0,0)

{div [ut(x+ ξ, t+ τ)ψ(ξ, τ)ξ]

−ψ(ξ, τ)Dut(x+ ξ, t+ τ) · ξ − nψ(ξ, τ)ut(x+ ξ, t+ τ)}

= −
4n

rn+1

∫

(ξ,τ)∈Er(0,0)

ψ(ξ, τ)ut(x+ ξ, t+ τ)

−
4

rn+1

∫

(ξ,τ)∈Er(0,0)

ψ(ξ, τ)
∂

∂τ
[Du(x+ ξ, t+ τ) · ξ] .

Considering the second integral in this expression, we can write

∫

(ξ,τ)∈Er(0,0)

ψ(ξ, τ)
∂

∂τ
[Du(x+ ξ, t+ τ) · ξ]

=

∫

ξ∈Bαmax (0)

∫ α−1
0 (|ξ|)

α−1
1 (|ξ|)

ψ(ξ, τ)
∂

∂τ
[Du(x+ ξ, t+ τ) · ξ]

= −

∫

(ξ,τ)∈Er(0,0)

ψτ (ξ, τ)Du(x+ ξ, t+ τ) · ξ

= −

∫

(ξ,τ)∈Er(0,0)

(

−
n

2τ
−

|ξ|2

4τ 2

)

Du(x+ ξ, t+ τ) · ξ.
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Recombining expressions, we see that the second term in φ′ now has a term
which cancels the first term, and we have

φ′(r) = −
4n

rn+1

∫

(ξ,τ)∈Er(0,0)

ψ(ξ, τ)ut(x+ ξ, t+ τ)

−
2n

rn+1

∫

(ξ,τ)∈Er(0,0)

Du(x+ ξ, t+ τ) · ξ

τ

= −
4n

rn+1

∫ 0

τmin

[
∫

|ξ|<α(τ)

ψ(ξ, τ)divDu(x+ ξ, t+ τ)

]

dτ

−
2n

rn+1

∫

(ξ,τ)∈Er(0,0)

Du(x+ ξ, t+ τ) · ξ

τ

=
4n

rn+1

∫

(ξ,τ)∈Er(0,0)

Dψ(ξ, τ) ·Du(x+ ξ, t+ τ)

−
2n

rn+1

∫

(ξ,τ)∈Er(0,0)

Du(x+ ξ, t+ τ) · ξ

τ

= 0

in view of (1).
This establishes, at least, that φ is a constant. The constant is then easily

seen to be

φ(r) ≡ lim
rց0

∫

(ξ,τ)∈E1(0,0)

u(x+ rξ, t+ r2τ)
|ξ|2

τ 2
= u(x, t)

∫

(ξ,τ)∈E1(0,0)

|ξ|2

τ 2
,

and if we had a verification that the integral appearing above has value 4,
then we would be done, since the expression appearing in the main result is
φ(r)/4.
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