Main existence and uniqueness theorem

John McCuan

April 17, 2014

Given

$$Lu = -\sum D_i(a_{ij}D_ju) + \sum_j b_j D_ju + cu$$

with the coefficients a_{ij} , b_j , c bounded and measurable, we are looking for $u \in H_0^1(\mathcal{U})$ such that

$$B(u,v) = \langle u,v \rangle_{L^2}$$
 for all $v \in H^1_0(\mathcal{U})$

where

$$B(u,v) = \int_{\Omega} \sum_{i,j} a_{ij} D_j u D_i v + \int_{\Omega} \sum_j b_j v D_j u + \int_{\Omega} c u v.$$

is the associated bilinear form. Let us take as our starting point Evans' first existence theorem:

Theorem 1 If L is (uniformly) elliptic, then there is some M such that

 $\tilde{B}(u,v) = B(u,v) + \mu \langle u,v \rangle_{L^2}$

is bounded and coercive for all $\mu \geq M$. Therefore, by the Lax-Milgram theorem, there is a unique $u \in H_0^1(\mathcal{U})$ for each $f \in L^2(\mathcal{U})$ such that

$$\dot{B}(u,v) = B(u,v) + \mu \langle u,v \rangle_{L^2} = \langle f,v \rangle_{L^2} \quad \text{for all } v \in H^1_0(\mathcal{U}).$$

Denoting the solution operator by $\Lambda = \Lambda_{\mu} : L^2 \to H_0^1$ and setting $\tilde{\Lambda} = I \circ \Lambda : L^2 \to L^2$ where I is the natural compact embedding of $H_0^1(\mathcal{U})$ into $L^2(\mathcal{U})$, we have shown the following:

Lemma 1 (solution operator) $\Lambda : L^2 \to H_0^1$ is a bounded linear operator and, consequently, $\tilde{\Lambda} : L^2 \to L^2$ is a compact operator. Our objective here is to prove the following:

Theorem 2 (main existence/uniqueness theorem) If L is (uniformly) elliptic and $c \geq 0$, then for each $f \in L^2(\mathcal{U})$, there is a unique $u \in H^1_0(\mathcal{U})$ such that

 $B(u, v) = \langle f, v \rangle_{L^2}$ for all $v \in H^1_0(\mathcal{U})$.

Proof: Let $\mu = \mu_0$ be fixed with $\mu_0 > M$ as in Evans' first existence theorem so that the solution embedding $\tilde{\Lambda} : L^2 \to L^2$ is compact. We can (and will) also assume $\mu_0 > 0$.

Note that a function $u \in H_0^1(\mathcal{U})$ satisfies

$$B(u, v) = \langle f, v \rangle_{L^2}$$
 for all $v \in H^1_0(\mathcal{U})$.

if and only if

$$\tilde{B}(u,v) - \mu_0 \langle u, v \rangle_{L^2} = \langle f, v \rangle_{L^2}$$
 for all $v \in H_0^1(\mathcal{U})$,

i.e., if and only if $u = \mu_0 \Lambda u + \Lambda f$, i.e., if and only if

$$\tilde{\Lambda}u - \frac{1}{\mu_0}Iu = -\frac{1}{\mu_0}\tilde{\Lambda}f.$$

Here we have applied the natural embedding $I : H_0^1 \to L^2$ to both sides. Notice that we can extend I to L^2 and consider also the operator

$$\tilde{\Lambda} - \frac{1}{\mu_0} \bar{I} : L^2 \to L^2$$

where $\bar{I}: L^2 \to L^2$ is the trivial/identity extension operator. Of course, this operator will agree with $\tilde{\Lambda} - I/\mu_0$ on the subspace $H_0^1(\mathcal{U})$.

By the Fredholm alternative,¹ either

- (i) $\lambda = -1/\mu_0$ is an eigenvalue for $\tilde{\Lambda}$, or
- (ii) For Each $\tilde{f} \in L^2$, there is a unique $u \in L^2$ for which

$$\left(\tilde{\Lambda} - \frac{1}{\mu_0}\bar{I}\right)u = \tilde{f}.$$

¹See the auxiliary results at the end.

If (i) were to hold, then we would get a *nonzero* function $u \in L^2$ for which

$$\tilde{\Lambda}u - \frac{1}{\mu_0}\bar{I}u = 0.$$

Since we know in fact that $\tilde{\Lambda}(L^2(\mathcal{U})) \subset H^1_0(\mathcal{U})$ we would then know $u = \mu_0 \tilde{\Lambda} u \in H^1_0(\mathcal{U})$.² But then we would have $u \in H^1_0(\mathcal{U}) \setminus \{0\}$ which satisfies $u = \mu_0 \Lambda u$, i.e.,

$$\tilde{B}\left(\frac{1}{\mu_0}u,v\right) = \langle u,v\rangle_{L^2} \quad \text{for all } v \in H^1_0(\mathcal{U}),$$

i.e.,

$$\tilde{B}(u,v) - \mu_0 \langle u, v \rangle_{L^2} = 0$$
 for all $v \in H_0^1(\mathcal{U})$,

i.e.,

$$B(u, v) = 0$$
 for all $v \in H_0^1(\mathcal{U})$.

By the weak maximum principle, however, and its uniqueness corollary, there is only one function $u \in H_0^1(\mathcal{U})$ for which

$$B(u, v) = 0$$
 for all $v \in H_0^1(\mathcal{U})$

That function is $u = 0 \in H_0^1(\mathcal{U})$. Thus, we have a contradiction, and alternative (ii) must be the one that holds.

Condition (ii) implies there is a unique weak solution to

$$\begin{cases} Lu = f \quad \text{on } \mathcal{U} \\ u_{\big|_{\partial \mathcal{U}}} = 0. \end{cases}$$
(1)

To see the existence, let $\tilde{f} = -\tilde{\Lambda}f/\mu_0$. This implies $u = \tilde{\Lambda}(\mu_0 u + f)$. In particular, since $\tilde{\Lambda} : L^2 \to H_0^1$, we now know $u \in H_0^1(\mathcal{U})$. Furthermore, rewriting what it means for $\tilde{\Lambda}(\mu_0 u + f) = u$, we have

$$\tilde{B}(u,v) = \langle \mu_0 u + f, v \rangle_{L^2}$$
 for all $v \in H^1_0(\mathcal{U})$.

That is,

$$\tilde{B}(u,v) - \mu_0 \langle u, v \rangle_{L^2} = \langle f, v \rangle_{L^2} \quad \text{for all } v \in H^1_0(\mathcal{U}),$$

²Note that this is a kind of regularity result; we start by knowing only that $u \in L^2$, but then use the fact that u satisfies some equation to show u has one weak derivative.

or

$$B(u,v) = \langle f, v \rangle_{L^2}$$
 for all $v \in H^1_0(\mathcal{U})$.

Thus, we have shown there exists some $u \in H_0^1(\mathcal{U})$ which is a weak solution of (1).

Uniqueness, in this case, follows from the corollary of the weak maximum principle below. \Box

1 Auxiliary results

Theorem 3 (Fredholm's theorem) If $\Lambda : \mathcal{B} \to \mathcal{B}$ is a compact operator on a Banach space and $\lambda \neq 0$, then exactly one of the following holds

- (i) λ is an eigenvalue for Λ , i.e., there is some $v \in \mathcal{B} \setminus \{0\}$ such that $\Lambda v = \lambda v$. In this case, $\Lambda - \Lambda I$ is neither one-to-one nor onto.
- (ii) (λ is not an eigenvalue for Λ , and) for each $\xi \in \mathcal{B}$, there is some $x \in \mathcal{B}$ such that $\Lambda x - \lambda x = \xi$, i.e., $\Lambda - \lambda I$ is onto.

In fact, in this case, $\Lambda - \lambda I$ is one-to-one and onto and $(\Lambda - \lambda I)^{-1}$ is bounded.

Theorem 4 (weak maximum principle for weak subsolutions) Assume $c \ge 0$. If $u \in H^1(\Omega)$ and $Lu \le 0$ in the sense that

 $B(u, v) \leq 0$ for all $v \in C_c^{\infty}(\Omega)$ with $v \geq 0$,

then

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+$$

where the supremum on the left is the essential supremum defined by

 $\inf\{M : \operatorname{measure}\{x : u(x) \ge M\} = 0\},\$

 $u^+ = \max\{u, 0\}$, and the supremum on the right is taken in the trace sense:

$$\inf\{M: (u^{+} - M)^{+} \in H^{1}_{0}(\Omega)\}\$$

One can also formulate a weak minimum principle for weak supersolutions and the two together have the following as a corollary:

Corollary 1 (uniqueness of weak solutions) If L is uniformly elliptic and $c \ge 0$, then there is at most one weak solution $u \in H_0^1(\mathcal{U})$ of the equation Lu = f. In particular, if $u \in H_0^1(\mathcal{U})$ and B(u, v) = 0 for all $v \in H_0^1(\mathcal{U})$, then u = 0.