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Given
Lu = −

∑

Di(aijDju) +
∑

j

bjDju + cu

with the coeficients aij , bj , c bounded and measurable, we are looking for
u ∈ H1

0 (U) such that

B(u, v) = 〈u, v〉L2 for all v ∈ H1
0 (U)

where

B(u, v) =

∫

Ω

∑

i,j

aijDjuDiv +

∫

Ω

∑

j

bjvDju +

∫

Ω

cuv.

is the associated bilinear form. Let us take as our starting point Evans’ first
existence theorem:

Theorem 1 If L is (uniformly) elliptic, then there is some M such that

B̃(u, v) = B(u, v) + µ〈u, v〉L2

is bounded and coercive for all µ ≥ M . Therefore, by the Lax-Milgram theo-
rem, there is a unique u ∈ H1

0 (U) for each f ∈ L2(U) such that

B̃(u, v) = B(u, v) + µ〈u, v〉L2 = 〈f, v〉L2 for all v ∈ H1
0 (U).

Denoting the solution operator by Λ = Λµ : L2 → H1
0 and setting Λ̃ = I ◦Λ :

L2 → L2 where I is the natural compact embedding of H1
0(U) into L2(U),

we have shown the following:

Lemma 1 (solution operator) Λ : L2 → H1
0 is a bounded linear operator

and, consequently, Λ̃ : L2 → L2 is a compact operator.
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Our objective here is to prove the following:

Theorem 2 (main existence/uniqueness theorem) If L is (uniformly) ellip-
tic and c ≥ 0, then for each f ∈ L2(U), there is a unique u ∈ H1

0 (U) such
that

B(u, v) = 〈f, v〉L2 for all v ∈ H1
0 (U).

Proof: Let µ = µ0 be fixed with µ0 > M as in Evans’ first existence theorem
so that the solution embedding Λ̃ : L2 → L2 is compact. We can (and will)
also assume µ0 > 0.

Note that a function u ∈ H1
0 (U) satisfies

B(u, v) = 〈f, v〉L2 for all v ∈ H1
0 (U).

if and only if

B̃(u, v) − µ0〈u, v〉L2 = 〈f, v〉L2 for all v ∈ H1
0 (U),

i.e., if and only if u = µ0Λu + Λf , i.e., if and only if

Λ̃u −
1

µ0

Iu = −
1

µ0

Λ̃f.

Here we have applied the natural embedding I : H1
0 → L2 to both sides.

Notice that we can extend I to L2 and consider also the operator

Λ̃ −
1

µ0

Ī : L2 → L2

where Ī : L2 → L2 is the trivial/identity extension operator. Of course, this
operator will agree with Λ̃ − I/µ0 on the subspace H1

0 (U).
By the Fredholm alternative,1 either

(i) λ = −1/µ0 is an eigenvalue for Λ̃, or

(ii) For Each f̃ ∈ L2, there is a unique u ∈ L2 for which

(

Λ̃ −
1

µ0

Ī

)

u = f̃ .

1See the auxiliary resuts at the end.
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If (i) were to hold, then we would get a nonzero function u ∈ L2 for which

Λ̃u −
1

µ0

Īu = 0.

Since we know in fact that Λ̃(L2(U)) ⊂ H1
0 (U) we would then know u =

µ0Λ̃u ∈ H1
0 (U).2 But then we would have u ∈ H1

0 (U)\{0} which satisfies
u = µ0Λu, i.e.,

B̃

(

1

µ0

u, v

)

= 〈u, v〉L2 for all v ∈ H1
0 (U),

i.e.,
B̃(u, v) − µ0〈u, v〉L2 = 0 for all v ∈ H1

0 (U),

i.e.,
B(u, v) = 0 for all v ∈ H1

0 (U).

By the weak maximum principle, however, and its uniqueness corollary, there
is only one function u ∈ H1

0 (U) for which

B(u, v) = 0 for all v ∈ H1
0 (U).

That function is u = 0 ∈ H1
0 (U). Thus, we have a contradiction, and alter-

native (ii) must be the one that holds.
Condition (ii) implies there is a unique weak solution to

{

Lu = f on U
u∣

∣

∂U

= 0. (1)

To see the existence, let f̃ = −Λ̃f/µ0. This implies u = Λ̃(µ0u + f). In
particular, since Λ̃ : L2 → H1

0 , we now know u ∈ H1
0 (U). Furthermore,

rewriting what it means for Λ̃(µ0u + f) = u, we have

B̃(u, v) = 〈µ0u + f, v〉L2 for all v ∈ H1
0 (U).

That is,

B̃(u, v) − µ0〈u, v〉L2 = 〈f, v〉L2 for all v ∈ H1
0 (U),

2Note that this is a kind of regularity result; we start by knowing only that u ∈ L
2,

but then use the fact that u satisfies some equation to show u has one weak derivative.
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or
B(u, v) = 〈f, v〉L2 for all v ∈ H1

0 (U).

Thus, we have shown there exists some u ∈ H1
0(U) which is a weak solution

of (1).
Uniqueness, in this case, follows from the corollary of the weak maximum

principle below. 2

1 Auxiliary results

Theorem 3 (Fredholm’s theorem) If Λ : B → B is a compact operator on a
Banach space and λ 6= 0, then exactly one of the following holds

(i) λ is an eigenvalue for Λ, i.e., there is some v ∈ B\{0} such that Λv = λv.
In this case, Λ − ΛI is neither one-to-one nor onto.

(ii) (λ is not an eigenvalue for Λ, and) for each ξ ∈ B, there is some x ∈ B
such that Λx − λx = ξ, i.e., Λ − λI is onto.

In fact, in this case, Λ − λI is one-to-one and onto and (Λ − λI)−1 is
bounded.

Theorem 4 (weak maximum principle for weak subsolutions) Assume c ≥ 0.
If u ∈ H1(Ω) and Lu ≤ 0 in the sense that

B(u, v) ≤ 0 for all v ∈ C∞

c (Ω) with v ≥ 0,

then
sup

Ω

u ≤ sup
∂Ω

u+

where the supremum on the left is the essential supremum defined by

inf{M : measure{x : u(x) ≥ M} = 0},

u+ = max{u, 0}, and the supremum on the right is taken in the trace sense:

inf{M : (u+ − M)+ ∈ H1
0 (Ω)}.

One can also formulate a weak minimum principle for weak supersolutions
and the two together have the following as a corollary:

Corollary 1 (uniqueness of weak solutions) If L is uniformly elliptic and
c ≥ 0, then there is at most one weak solution u ∈ H1

0 (U) of the equation
Lu = f . In particular, if u ∈ H1

0 (U) and B(u, v) = 0 for all v ∈ H1
0 (U), then

u = 0.
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