Coercivity and the Poincaré inequality

John McCuan

August 31, 2015

Coercivity for the bilinear form

$$B(u,v) = \int_{\Omega} \sum_{i,j} a_{ij} D_j u D_i v + \int_{\Omega} \sum_j b_j v D_j u + \int_{\Omega} cuv.$$

associated with the linear partial differential operator

$$Lu = -\sum_{i,j} D_i(a_{ij}D_ju) + \sum_j b_j D_ju + cu$$

is the requirement that for some m > 0,

 $B(u, u) \ge m \|u\|_{H^1}^2.$

Here we prove carefully the main lemma concerning coercivity for operators of the form L which are *elliptic* and explain the role played by the Poincaré inequality.

1 Ellipticity

We assume the coefficients a_{ij} , b_j and c all defined and bounded on the closure of some bounded domain $\Omega \subset \mathbb{R}^n$. We assume further the condition of *uniform ellipticity*, namely that for some $\epsilon_0 > 0$

$$\sum a_{ij}\xi_i\xi_j \ge \epsilon_0 |\xi|^2 \quad \text{for all } \xi \in \mathbb{R}^n.$$

Using ellipticity, we get the initial estimate

$$B(u,u) \ge \epsilon_0 \int |Du|^2 - \bar{b} \sum \int |u| |D_j u| - \bar{c} \int |u|^2$$

where

$$\bar{b} = \sup_{j,x\in\Omega} |b_j(x)|$$
 and $\bar{c} = \sup_{x\in\Omega} |c(x)|.$

The last two terms are not in our favor. We only have the (small) $\epsilon_0 \|Du\|_{L^2}^2$ term on which to rely. To make matters worse, we need to somehow insert an additive term $\|u\|_{L^2}^2$ on the right to get, finally, and H^1 norm on the right.

Let us first note that the inequality

$$ab \le \frac{\epsilon^2}{2}a^2 + \frac{1}{2\epsilon^2}b^2$$

can be applied to the second term to preserve at least some of our only help. That is, for any $\epsilon > 0$,

$$B(u,u) \ge \epsilon_0 \int |Du|^2 - \frac{\bar{b}\epsilon^2}{2} \int |Du|^2 - \frac{\bar{b}}{2\epsilon^2} \int |u|^2 - \bar{c} \int |u|^2.$$

In particular, taking $\epsilon^2 < \epsilon_0/\bar{b}$, we get an inequality

$$B(u,u) \ge \frac{\epsilon_0}{2} \int |Du|^2 - M \int |u|^2 \tag{1}$$

where M > 0 is some (large) constant. Of course if there were no b and c terms there would be no troublesome $M ||u||_{L^2}^2$ term, but we would still have the difficulty of replacing the norm of Du with an H^1 norm of u. We attempt to address this unavoidable difficulty now.

2 Poincaré inequality

Recall that the H^1 norm may be defined variously by

$$||u||_{H^1} = |u|_{L^2} + \sum_j |D_j u|_{L^2}$$

or

$$||u||_{H^1} = \left(|u|_{L^2}^2 + \sum_j |D_j u|_{L^2}^2\right)^{1/2}$$

or even

$$||u||_{H^1} = |u|_{L^2} + \max_j |D_j u|_{L^2}.$$

In view of our initial estimate above, it looks like we might wish to use the second form of the norm.

There are various inequalities which relate/bound norms of a function in terms of norms of its derivative. Perhaps the simplest is the C_c^{∞} Sobolev inequality:

If $u \in C_c^{\infty}(\mathbb{R}^n)$ and $1 \leq p < n$, then

$$||u||_{L^{p^*}} \le C ||Du||_{L^p}$$

where $p^* = np/(n-p)$ is the Sobolev exponent. Here C is a positive constant that depends on n and p, but (most importantly) is independent of u.

In fact, one only needs $u \in C_c^1(\mathbb{R}^n)$ for this result. In this case, we have $u \in H_0^1(\Omega)$, so we use the following version called the $W_0^{1,p}$ Poincaré inequality:

Theorem 1 If Ω is a bounded domain in \mathbb{R}^n , $n > p \ge 1$, and $1 \le q \le p^*$, then there is a constant $C = C(n, p, q, \Omega)$ such that

$$||u||_{L^q(\Omega)} \le C ||Du||_{L^p(\Omega)} \quad \text{for all } u \in W_0^{1,p}(\Omega).$$

Proof: Since C_c^{∞} is dense in $W_0^{1,p}$, there is a sequence of C_c^{∞} functions u_j with

$$||u_j - u||_{W^{1,p}} \to 0.$$

Setting

$$\bar{u}_j(x) = \begin{cases} u_j(x), & x \in \Omega\\ 0, & x \mathbb{R}^n \setminus \Omega \end{cases}$$

we have $\bar{u}_j \in C_c^{\infty}(\mathbb{R}^n)$. Therefore, applying the C_c^{∞} Sobolev inequality, we get

$$\|\bar{u}_j\|_{L^{p^*}} \le C \|D\bar{u}_j\|_{L^p}.$$

This is precisely the same as

$$||u_j||_{L^{p^*}(\Omega)} \le C ||Du_j||_{L^p(\Omega)}.$$

And we can take a limit to obtain

$$||u||_{L^{p^*}(\Omega)} \le C ||Du||_{L^p(\Omega)}.$$

Finally, we claim that for $1 \leq q \leq p^*$ there is some C for which

$$||u||_{L^{q}(\Omega)} \leq C ||u||_{L^{p^{*}}(\Omega)}.$$

To see this, note that since $|u|^q \in L^m$ where $m = p^*/q \ge 1$,

$$||u||_{L^{q}(\Omega)}^{q} = \int (|u|^{p^{*}})^{q/p^{*}}$$

= $\int (|u|^{p^{*}})^{q/p^{*}} \chi_{\Omega}$
 $\leq \left(\int |u|^{p^{*}}\right)^{q/p^{*}} |\Omega|^{\frac{m}{m-1}}$
= $\left(\int |u|^{p^{*}}\right)^{q/p^{*}} |\Omega|^{\frac{p^{*}}{p^{*}-q}}.$

Thus,

$$||u||_{L^q(\Omega)} \le C ||u||_{L^{p^*}(\Omega)}$$
 with $C = |\Omega|^{\frac{p^*}{q(P^*-q)}}$.

3 Estimate

Returning to (1) and using Theorem 1 in the form $||Du||_{L^p(\Omega)} \ge ||u||_{L^q(\Omega)}/C$, we obtain

$$B(u, u) \ge \frac{\epsilon_0}{4} \int |Du|^2 + \frac{\epsilon_0}{4} \int |Du|^2 - M \int |u|^2$$
$$\ge \frac{\epsilon_0}{4} \int |Du|^2 + \frac{\epsilon_0}{4C} \int |u|^2 - M \int |u|^2$$
$$\ge m \|u\|_{H^1(\Omega)}^2 - M \int |u|^2$$

where

$$m = \min\left\{\frac{\epsilon_0}{4}, \frac{\epsilon_0}{4C}\right\} > 0.$$

That is essentially the best we can do:

Lemma 1 (Main coercivity lemma) If L is elliptic, then there is some constants m, M > 0 such that

$$B(u, u) \ge m ||u||_{H^1(\Omega)}^2 - M \int |u|^2.$$

Corollary 1 If L is elliptic, then there is a constant M > 0 such that $\tilde{B}(u,v) = B(u,v) + \mu \langle u,v \rangle_{L^2}$ is coercive for each $\mu \geq M$.

Corollary 2 If L is elliptic, and

$$\int_{\Omega} \sum_{j} b_{j} u D_{j} u + \int_{\Omega} c u^{2} \ge 0 \quad \text{for } u \in H_{0}^{1}(\Omega),$$

then $B: H^1_0 \times H^1_0 \to \mathbb{R}$ is coercive.