
Math 6341, Final Exam: Various Topics (practice)

1. (25 points) (3.5.9-10, Hamilton-Jacobi PDE)

(a) Find the convex dual (Legendre transform) L = H∗ for the Hamiltonian

H(p) = |p|3.

(b) Write down the Hopf-Lax formula and explain its relation to the variational problem
of minimizing

∫ t

0

L(w′(σ)) dσ + u0(w(0))

for a given Lagrangian L and initial function u0.

(c) Find a weak solution of the Hamilton-Jacobi IVP

{

ut + |ux|3 = 0, (x, t) ∈ R× (0,∞)
u(x, 0) = |x|.

(d) Is the weak solution you found unique? (Explain)

Solution:

(a) Recall that
H∗(v) = max

p
{p · v − |p|3}.

Taking the gradient with respect to p to find a critical point, we get

v − 3|p|p = 0.

It follows that |p| =
√

|v|/3 and therefore the critical point is p = v/
√

3|v|.
The resulting maximum value is

L(v) = |v|3/2/
√

3 − (|v|/3)3/2 = c|v|3/2

where c = 2/(3
√

3).

As a partial aside, the Legendre transform is well-defined if H(p) = |p|3 is
convex and

lim
|p|→∞

|p|3
|p| = +∞.

The second condition clearly holds. One way to check convexity, is to compute
the Hessian D2H , and consider the quadratic form 〈D2Hξ, ξ〉. In fact, Hpi

=
3pi|p|, and

Hpipj
= 3

(

δij |p| +
pipj

|p|

)

.
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Thus,

∑

ij

Hpipj
ξiξj = 3

(

|p||ξ|2 +
1

|p|
∑

pipjξiξj

)

≥ 3(|p| − |p|)|ξ|2 > 0.

This means D2H is positive semidefinite, which means H is convex. Taking
p1 = −p2 and all the other pj = 0 and ξ1 = ξ2 with all the other ξj = 0, we find

∑

ij

Hpipj
ξiξj = 3

(

|p||ξ|2 − 1

|p|
|p|2|ξ|2

2

)

=
3|p||ξ|2

2
.

This indicates that H is not uniformly convex around p = 0.

Notice also that the expressions for Hpi
and Hpipj

are continuous, so H ∈ C2.
I believe this is enough regularity (and H is even more regular) to make the
arguments in our introduction to Hamilton-Jacobi equations, though in the
discussion of the Hopf-Lax formula and weak solutions (p. 123) we formally
assumed H was “smooth” which presumably means C∞.

(b) If L, u0 : Rn → R are given with L convex and satisfying

lim
|v|→∞

L(v)

|v| = +∞

and u0 Lipschitz continuous, then

u(x, t) = min
ξ∈Rn

{

tL

(

x − ξ

t

)

+ u0(ξ)

}

is the value of

inf
w∈C1[0,t]

{
∫ t

0

L(w′(σ)) dσ + u0(w(0)) : w(t) = x

}

.

(c) According to part (a), the solution should be given by the Hopf-Lax formula

u(x, t) = min
ξ∈Rn

2t

3
√

3

( |x − ξ|
t

)3/2

+ |ξ|

= min
ξ∈Rn

2

3
√

3t
|x − ξ|3/2 + |ξ|.

Taking the gradient (derivative since n = 1) with respect to ξ to find critical
points, we have

−
√

|x − ξ|
3t

x − ξ

|x − ξ| +
ξ

|ξ| = 0.
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It follows that any critical ξ satisfies

|x − ξ| = 3t.

In particular, any associated minimum value will satisfy

u(x, t) = 2t + |ξ|. (1)

Also in this case, we see that ξ = x ± 3t. Thus, we find an initial candidate

u1(x, t) =

{

2t + |x − 3t|, x ≥ 0
2t + |x + 3t|, x ≤ 0.

There is another possibility, however. Namely, if we look at the gradient
calculation above, there may be singular minima associated with |ξ| = 0 or
|x − ξ| = 0. These possibilities give

u2(x, t) =
2

3
√

3t
|x|3/2 and u3(x, t) = |x|.

Thus, the Hopf-Lax formula reduces to

u(x, t) = min
t>0

{u1(x, t), ut(x, t), u3(x, t)}.

If we consider first the region where x > 3t, we find

u1 = x − t < u3 = x and u2 =
2

3
√

3t
x3/2.

Thus, u3 is ruled out in this region (which we should expect since u3 doesn’t
satisfy the equation (n.b., Theorem 5), and near t = 0 we see that u1 definitely
provides the minimum. Furthermore,

∂

∂t
[u1 − u2] = −1 +

1

3
√

3

(x

t

)3/2

.

It will be found that this expression has a unique zero at x = 3t where u1 =
2t = u2. Thus, u1 is the minimum in the region x > 3t, and u takes the value
2t along the line x = 3t.

Moving into the region x < 3t, we see that u1 = 5t−x ceases to be a solution of
the PDE, and not surprisingly, we can see that it does not provide the minimum
value. In fact, we still have u1 = u2 along x = 3t, and

∂

∂t
[u1 − u2] = 5 +

1

3
√

3

(x

t

)3/2

> 0.
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Thus, we need only make the comparison between u2 (the presumed solution)
and u3 = x. As noted above, x = u3 > u1 = u2 along x = 3t. Furthermore,
setting u2 = u3 yields x = (27/4)t which is actually in the region x > 3t. We
conclude that u2 < u3 in the region x < 3t and (with a similar analysis for
x ≤ 0)

u(x, t) =

{ −t + |x|, |x| ≥ 3t
2

3
√

3t
|x|3/2, |x| < 3t.

On the smooth regions, this solves the PDE in accordance with Theorem 5,
though at least formally, we assumed H was smooth in the proof of that theo-
rem, and the H considered in this problem has an apparent singularity at the
origin—though I guess it is at least C3.

(d) Uniqueness of the weak solution follows from uniform convexity of H or semi-
concavity of u0(x) = |x|. (Theorem 8). Since |x| is not semi-concave, we
compute

Hpp = (3p|p|)′ = 3(|p| + p2/|p|) = 6|p|.
This value is not bounded away from zero, so H is not uniformly convex. We
cannot conclude uniqueness of the solution above.

2. (25 points) (Green’s Functions for Laplace’s PDE, §2.2.4)

(a) Write down the fundamental solution Φ = Φ(x) for Laplace’s PDE (centered at
x = 0).

(b) Compute DΦ(x).

(c) Compute

lim
r→0

∫

{ξ:|ξ−x|=r}
u(ξ)e−ix·(ξ−x)DΦ(ξ − x) · n

where n is the outward normal to Br(x).

Solution:

(a)

Φ(x) =

{ − 1
2π

log |x|, n = 2
1

n(n−2)ωn

1
|x|n−2 , n > 2.

(b)

DΦ(x) = − 1

nωn

x

|x|n .
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(c)

lim
r→0

∫

{ξ:|ξ−x|=r}
u(ξ)e−ix·(ξ−x)DΦ(ξ − x) · n

= lim
r→0

− 1

nωn

∫

|ξ−x|=r

u(ξ)e−ix·(ξ−x) ξ − x

|ξ − x|n · ξ − x

|ξ − x|

= − 1

nωnrn−1
lim
r→0

∫

|ξ−x|=r

u(ξ)e−ix·(ξ−x)

= − 1

|∂Br|
lim
r→0

∫

|ξ−x|=r

u(ξ)e−ix·(ξ−x)

= −u(ξ)e−ix·(ξ−x)
∣

∣

ξ=x

= −u(x).

3. (25 points) (4.7.2) Find a separated variables solution of
{

∆u = 0 on R2

u(x, 0) = 0, uy(x, 0) = sin x.

Explain your reasoning carefully.

Solution: Setting u = f(x)g(y), we obtain away from f = 0 or g = 0 a separation
constant λ such that

−f ′′

f
=

g′′

g
= λ.

Thus, we obtain two ODEs

f ′′ = −λf and g′′ = λg.

The first boundary condition gives f(x)g(0) = 0 from which we conclude g(0) = 0,
since f(x) = 0 cannot lead to a solution satisfying the other boundary condition.

The second boundary condition is f(x)g′(0) = sin x. Therefore,

f(x) =
sin x

g′(0)
.

It follows from this that f ′′ = −f . In view of the first ODE, we must have λ = 1.
The second ODE with the first boundary condition then yeilds

g(y) = g′(0) sinh y.

The solution is thus,
u(x, y) = f(x)g(y) = sinh y sin x.
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4. (25 points) (Fourier Transform, §4.3.1)

(a) Define the Fourier transform of u ∈ L1(Rn) ∩ L2(Rn).

(b) If u, v ∈ L1(Rn) ∩ L2(Rn), show

(u ∗ v)∧ = (2π)n/2ûv̂.

Solution:

(a)

û =
1

(2π)n/2

∫

x∈Rn

e−ix·ξu(x).

(b)

(u ∗ v)∧(ξ) =
1

(2π)n/2

∫

x∈Rn

e−ix·ξ(u ∗ v)(x)

=
1

(2π)n/2

∫

x∈Rn

e−ix·ξ
(

∫

η∈Rn

u(x − η)v(η)

)

=
1

(2π)n/2

∫

η∈Rn

(
∫

x∈Rn

e−ix·ξu(x − η)v(η)

)

=
1

(2π)n/2

∫

η∈Rn

(
∫

x∈Rn

e−ix·ξu(x − η)

)

v(η)

=

∫

η∈Rn

(

1

(2π)n/2

∫

x̃∈Rn

e−i(x̃+η)·ξu(x̃)

)

v(η)

=

∫

η∈Rn

e−iη·ξ
(

1

(2π)n/2

∫

x̃∈Rn

e−ix̃·ξu(x̃)

)

v(η)

=

∫

η∈Rn

e−iη·ξû(ξ)v(η)

= û(ξ)

∫

η∈Rn

e−iη·ξv(η)

= (2π)n/2û(ξ)v̂(ξ).


