
Math 6341, Exam 2: 2.3-2.4 (practice) Name and section:

1. (25 points) Solve the initial/boundary value problem
ut = ∆u on [−1, 1]× (0,∞)
u(−1, t) = u(1, t) = 0
u(x, 0) = sin(πx).

Hint: Solve on R × (0,∞) using spatial convolution. Then show you have also solved
this problem.

Solution: A spatial convolution solution is

u(x, t) =
1√
4πt

∫
ξ∈R

e−
|x−ξ|2

4t sin(πξ)

=
1√
4πt

∫
η∈R

e−
|η|2
4t sin(π(x− η)).

According to Theorem 1 on page 47, this is a solution of the PDE on R × [0,∞)
satisfying the initial condition.

From the second integral expression, we have

u(−1, t) =
1√
4πt

∫
η∈R

e−
|η|2
4t sin(π(−1− η))

=
1√
4πt

∫
η∈R

e−
|η|2
4t sin(η))

=
1√
4πt

[∫ 0

−∞
e−

|η|2
4t sin(η)) dη +

∫ ∞

0

e−
|η|2
4t sin(η)) dη

]
=

1√
4πt

[∫ 0

∞
e−

|ξ|2
4t sin(−ξ)) (−1)dξ +

∫ ∞

0

e−
|η|2
4t sin(η)) dη

]
= 0.

The other boundary condition follows similarly.

As was pointed out in class, this problem also admits a separated variables solution:
u(x, t) = A(x)B(t). Assuming this form, we find AB′ = A′′B or A′′/A = B′/B Since
the left expression only depends on x and the right expression depends only on t, it
is easy to see that both quotients are independent of x and t, i.e., the common value
of these quotients is a “separation constant” λ. (To see this just differentiate with
respect to x or t.)

The boundary condition on the PDE then translates into A(−1) = 0 = A(1). One
can consider various cases to see that nonzero solutions of the resulting boundary
value problem for A are only possible when λ = −ω2. Since we are only looking for
a solution with a very special initial value, I can use a little foresight to simply take



Name and section:

λ = −π2. Then one sees that A(x) = sin(πx) satisfies the ODE. Furthermore, the
other equation B′ = −π2B leads to a solution of the PDE:

B(t) = ce−π2t and u(x, t) = A(x)B(t) = e−π2t sin(πx).

Notice we have taken the integration constant c = 1 to satisfy the initial condition
for the PDE.

By Theorem 5 on page 57 (the uniqueness theorem), the two solutions we have
obtained are the same. It is not entirely obvious from the formulae. However, we
note that

u(x, t) =
1√
4πt

∫
η∈R

e−
|η|2
4t sin(π(x− η))

=
1√
4πt

[∫
η∈R

e−
|η|2
4t sin(πx) cos(η)−

∫
η∈R

e−
|η|2
4t cos(πx) sin(η)

]
=

1√
4πt

[
sin(πx)

∫
η∈R

e−
|η|2
4t cos(η)− cos(πx)

∫
η∈R

e−
|η|2
4t sin(η)

]
=

sin(πx)√
4πt

∫
η∈R

e−
|η|2
4t cos(η).

Thus, the question is reduced to showing

1√
4πt

∫
η∈R

e−
|η|2
4t cos(η) = e−π2t.
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2. (25 points) Find Duhamel’s solution of{
ut −∆u = t(1− |x|)χ[−1,1](x) on R× (0,∞)
u(x, 0) = 0.

Verify that for each fixed t, your solution u = u(x, t) has a unique maximum at x = 0.

Solution:

u(x, t) =

∫ t

0

1

[4π(t− τ)]n/2

(∫
ξ∈Rn

e−
|x−ξ|2
4(t−τ)f(ξ, τ)

)
dτ.

As a first case, let us assume 0 ≤ x ≤ 1.

∂u

∂x
=

∫ t

0

1

2[4π(t− τ)]n/2(t− τ)

(∫
ξ∈Rn

(ξ − x)e−
|x−ξ|2
4(t−τ)f(ξ, τ)

)
dτ (1)

=

∫ t

0

1

2[4π(t− τ)]n/2(t− τ)

(∫
η∈B1(−x)

ηe−
|η|2

4(t−τ)f(x+ η, τ)

)
dτ

=

∫ t

0

1

2[4π(t− τ)]n/2(t− τ)

(∫ 0

−x−1

ηe−
|η|2

4(t−τ)f(x+ η, τ) dη

+

∫ −x+1

0

ηe−
|η|2

4(t−τ)f(x+ η, τ) dη

)
dτ

=

∫ t

0

1

2[4π(t− τ)]n/2(t− τ)

(
−

∫ x+1

0

ξe−
|ξ|2

4(t−τ)f(x− ξ, τ) dξ

+

∫ −x+1

0

ηe−
|η|2

4(t−τ)f(x+ η, τ) dη

)
dτ

= −
∫ t

0

1

2[4π(t− τ)]n/2(t− τ)

(∫ 1−x

0

ηe−
|η|2

4(t−τ) [f(x− η, τ)− f(x+ η, τ)] dη

+

∫ x+1

1−x

ξe−
|ξ|2

4(t−τ)f(x− ξ, τ) dξ

)
dτ. (2)

Notice that if 0 < η ≤ 1− x, then f(x− η, τ)− f(x+ η, τ) = t(x+ η − |x− η|) > 0
unless x = 0. Furthermore, the ξ integral appearing in (2) is clearly nonnegative.
Finally, if 0 < x ≤ 1, one of the two integrals in the last expression above must
always be positive for some nontrivial interval of the variable of integration. Owing
to the negative sign, therefore, we have shown that ∂u/∂x ≤ 0 when 0 ≤ x ≤ 1 with
equality holding and only holding for x = 0.

A similar string of inequalities shows that ∂u/∂x > 0 for −1 ≤ x < 0. For |x| ≥ 1,
it follows directly from inspection of (1) that ∂u/∂x has the opposite sign of x. This
shows that u is strictly increasing for x < 0, decreasing for x > 0, and has a unique
maximum at x = 0 for each fixed time t.
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Notice the same problem can be posed for x ∈ Rn. It is a bit more technical to prove
each “time slice” has a unique maximum at x = 0 in that case, but it’s still true.

A nice alternative argument was given in the 1-D case by Gautam Goel: Starting
from (1) separate the quantity ∂u/∂x into two terms of equal value. Use the change
of variables η = ξ−x in one of the terms as we have done. Use the change of variables
η = x− ξ in the other term. Then you get:

∂u

∂x
=

∫ t

0

1

4[4π(t− τ)]n/2(t− τ)

(∫
η∈Rn

ηe−
|η|2

4(t−τ)f(x+ η, τ) (3)

−
∫

η∈Rn

ηe−
|η|2

4(t−τ)f(x− η, τ)

)
dτ

=

∫ t

0

1

4[4π(t− τ)]n/2(t− τ)

(∫
η∈Rn

ηe−
|η|2

4(t−τ) [f(x+ η, τ)− f(x− η, τ)]

)
dτ

From here, one checks by cases that f(x+ η, τ)− f(x− η, τ) has the same sign as η
when x < 0 and the opposite sign when x > 0. Since strict inequality (positivity or
negativity) of the integrand prevails unless x = 0, one obtains the same conclusion.
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3. (25 points) (2.5.19) Solve the IVP
vtt = vxx on R× (0,∞)
v(x, 0) = 1/(1 + x2) on R

vt(x, 0) = 1 on R.

Solution: Set w = vt − vx. Then according to the equation, w should satisfy wt +
wx = 0. Setting φ(s) = w(x + s, t + s), we find φ is a constant function of s. Thus,
setting s = −t, we find w(x− t, 0) = w(x, t), and hence

w(x, t) = 1 +
2(x− t)

[1 + (x− t)2]2
.

We are thus confronted with the problem

vt − vx = 1 +
2(x− t)

[1 + (x− t)2]2
.

with boundary value v(x, 0) = 1/(1 + x2). Setting ψ(s) = v(x− s, t+ s), we find

ψ′(s) = 1− 2(x− t− 2s)

[1 + (x− t− 2s)2]2
.

Integrating, we get

ψ(s) = ψ(0) + s+

∫ s

0

2(x− t− 2σ)

[1 + (x− t− 2σ)2]2
dσ

= ψ(0) + s+
1

2[1 + (x− t− 2σ)2]
∣∣s

σ=0

= ψ(0) + s+
1

2[1 + (x− t− 2s)2]
− 1

2[1 + (x− t)2]
.

Thus, solving for ψ(0) and evaluating at s = −t,

v(x, t) = v(x+ t, 0) + t− 1

2[1 + (x+ t)2]
+

1

2[1 + (x− t)2]

=
1

1 + (x+ t)2
+ t− 1

2[1 + (x+ t)2]
+

1

2[1 + (x− t)2]

= t+
1

2[1 + (x+ t)2]2
+

1

2[1 + (x− t)2]2
.
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4. (25 points) Find a solution of{
ut −∆u = t on [−1, 1]× (0,∞)
u(−1, t) = 0, u(1, t) = 2.

Is your solutions unique? (Can you find another solution?)

Solution:

Though we didn’t make specific mention of it, there were choices in the first problem
about how to extend the initial values. We chose the extension, furthermore, so that
a certain “balance” resulted in the boundary conditions u(±1, t) = 0 being satisfied.
We have no initial values in this problem, but we can try the same strategy and
extend the forcing function in both time and space so that a similar balance prevails:
Setting

f(x, t) = t
∑
j∈Z

(−1)jχ[2j−1,2j+1](x),

we consider the forced problem with a homogeneous initial condition:{
vt −∆v = f on R× (0,∞)
v(x, 0) = 0.

According to Theorem 2 on page 50, Duhamel’s principle gives us a solution

v(x, t) =

∫ t

0

(∫
ξ∈Rn

Φ(x− ξ, t− τ)f(ξ, τ)

)
dτ

=

∫ t

0

τ

[4π(t− τ)]n/2

∞∑
j=−∞

(−1)j

∫ 2j+1

2j−1

e−
|x−ξ|2
4(t−τ) dξ dτ.

Using the same strategy suggested in problem 1, we next restrict this solution of
the equation to [−1, 1] and attempt to verify the homogeneous boundary conditions
v(±1, t) ≡ 0. In fact, setting x = −1 and applying the change of variables η = ξ+1,
we find

v(x, t) =

∫ t

0

τ

[4π(t− τ)]n/2

∞∑
j=−∞

(−1)j

∫ 2j+3

2j+1

e−
|η|2

4(t−τ) dη dτ

=

∫ t

0

τ

[4π(t− τ)]n/2

∫
R

∞∑
j=−∞

(−1)jχ[2j−1,2j+1](η − 1)e−
|η|2

4(t−τ) dη dτ.

Notice, however, that for fixed t and τ ,

g(η) =
∞∑

j=−∞

(−1)jχ[2j−11,2j+1](η − 1)e−
|η|2

4(t−τ)
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satisfies

g(−η) =
∞∑

j=−∞

(−1)jχ[2j−1,2j+1](−η − 1)e−
|η|2

4(t−τ)

=
∞∑

j=−∞

(−1)jχ[−2j−3,−2j+1](η − 1)e−
|η|2

4(t−τ)

=
∞∑

k=−∞

(−1)k−1χ[−2k−1,−2k+3](η − 1)e−
|η|2

4(t−τ)

= −
∞∑

`=−∞

(−1)−`χ[2`−1,2`+3](η − 1)e−
|η|2

4(t−τ)

= −g(η).

That is, g is odd, so it’s integral is zero. Hence, v(−1, t) ≡ 0. (This is the consequence
of the “balance” of temperature introduced in f .) The fact that v(1, t) ≡ 0 follows
similarly.

It remains to modify v so that the boundary conditions u(−1, t) = 0 and u(1, t) = 2
are satisfied. For this we may use any solution w = w(x) of the boundary value
problem for Laplace’s equation{

∆w = 0 on
w(−1) = 0, w(1) = 2.

In one dimension ∆w = w′′ so this is easy to solve: w(x) = x+ 1.

Thus, we have a solution for the original problem: u = v + w.

More generally, we could take w̃ = w̃(x, t) to be any solution of the homogeneous
(unforced) problem {

w̃t −∆w̃ = 0 on [−1, 1]× (0,∞)
w̃(−1, 0) = 0, w̃(1, 0) = 2.

Writing z = w̃ − w, we find that z can be any solution of{
zt −∆z = 0 on [−1, 1]× (0,∞)
z(−1, 0) = 0, z(1, 0) = 0.

Thus, the question of uniqueness reduces to the uniqueness of the zero solution
z ≡ 0 for this problem. However, we already constructed a nontrivial solution of this
problem in problem 1 of this exam. Taking z to be that solution (or any number of
others), we can then set w̃ = w+ z and get a second distinct solution of the original
problem. Since v+w and v+w+ z are distinct solutions, uniqueness does not hold.


