
Math 6341, Exam 2: 2.3-3.2 (practice) Name and section:

1. (25 points) (2.5.14) Solve the initial value problem (IVP)
{

ut = ∆u+ 5u on R2
× (0,∞)

u(x, y, 0) = 1/(1 + x2 + y2) on R2.

Solution: Multiply through the equation by e−5t to obtain

e−5tut − 5e−5tu = (e−5tu)t = ∆(e−5tu).

That is, u = e5tv where v satisfies

{

vt = ∆v on R2
× (0,∞)

v(x, y, 0) = 1/(1 + x2 + y2) on R2.

This equation can be solved by convolution with the fundamental solution

Φ(x, y, t) =
1

4πt
e−

x2+y2

4t .

In fact,

v(x, y, t) =

∫R2

1

4πt(1 + ξ2 + η2)
e−

(x−ξ)2+(y−η)2

4t

=

∫

2π

0

∫

∞

0

1

4πt(1 + r2)
e−

(x−r sin θ)2+(y−rθ)2

4t r dr dθ.

Thus,

u(x, y, t) =
e5t

4πt

∫

2π

0

∫

∞

0

1

1 + r2
e−

(x−r cos θ)2+(y−r sin θ)2

4t r dr dθ.

2. (25 points) (2.5.19) Show that every solution of the equation uxy = 0 on all of R2 has
the form u(x, y) = F (x) +G(y).

Solution: Assuming we have a classical C2 solution u, we can imagine that x is
fixed and integrate the equation from 0 to y to obtain

ux(x, y) = u(x, 0) = f(x).

Since x was arbitrary, this gives an identity in x and y. That is, u satisfies ux = f .
Integrating next from 0 to x (with y fixed), we find

u(x, y) = u(0, y) +

∫ x

0

f(ξ)dξ.



Name and section:

Since f was a C1 function, we see that F (x) =
∫ x

0
f(ξ)dξ is C2. Setting G(y) =

u(0, y), we have shown that u(x, y) = F (x) +G(y) for some C2 functions F and G.

3. (25 points) (2.5.19) Solve the IVP






vtt = vxx on R× (0,∞)
v(x, 0) = 1/(1 + x2) on R
vt(x, 0) = 1 on R.

Solution: Set w = vt − vx. Then according to the equation, w should satisfy wt +
wx = 0. Setting φ(s) = w(x+ s, t+ s), we find φ is a constant function of s. Thus,
setting s = −t, we find w(x− t, 0) = w(x, t), and hence

w(x, t) = 1 +
2(x− t)

[1 + (x− t)2]2
.

We are thus confronted with the problem

vt − vx = 1 +
2(x− t)

[1 + (x− t)2]2
.

with boundary value v(x, 0) = 1/(1 + x2). Setting ψ(s) = v(x− s, t+ s), we find

ψ′(s) = 1 −

2(x− t− 2s)

[1 + (x− t− 2s)2]2
.

Integrating, we get

ψ(s) = ψ(0) + s+

∫ s

0

2(x− t− 2σ)

[1 + (x− t− 2σ)2]2
dσ

= ψ(0) + s+
1

2[1 + (x− t− 2σ)2]
∣

∣

s

σ=0

= ψ(0) + s+
1

2[1 + (x− t− 2s)2]
−

1

2[1 + (x− t)2]
.

Thus, solving for ψ(0) and evaluating at s = −t,

v(x, t) = v(x+ t, 0) + t−
1

2[1 + (x+ t)2]
+

1

2[1 + (x− t)2]

=
1

1 + (x+ t)2
+ t−

1

2[1 + (x+ t)2]
+

1

2[1 + (x− t)2]

= t+
1

2[1 + (x+ t)2]2
+

1

2[1 + (x− t)2]2
.



Name and section:

4. (25 points) (3.5.1) Show that

U(x, t, ξ, s) = ξ · x− tH(ξ) + s

is a complete integral for the Hamilton-Jacobi equation

ut +H(Du) = 0.

Solution: The first requirement is that for each ξ and s fixed u(x, t) = U(x, t, ξ, s)
solves the equation. In fact,

ut = −H(ξ)

and
Du = ξ.

Thus, ut +H(Du) = −H(ξ) +H(ξ) = 0. So we have a family of solutions.

Second, the (n+ 1) × (n+ 2) envelope matrix















x1 − tH1(ξ) 1 0 0 −H1(ξ)
x2 − tH2(ξ) 0 1 0 −H2(ξ)

...
... 0

. . .
...

...
xn − tHn(ξ) 0 1 −Hn(ξ)

1 0 . . . . . . 0















is required to have rank n+1. Since rank is preserved by elementary row operations,
we may use the last row to eliminate all entries in the first column except the last
one. Then moving the last row from the bottom to the top, we get the (n+1)×(n+1)
identity with one additional column appended. This clearly has rank n+ 1. Thus,

U(x, t, ξ, s) = ξ · x− tH(ξ) + s

provides a complete integral.


