1. (25 points) (2.5.1) Find $u: \mathbb{R}^2 \times [0, \infty) \to \mathbb{R}$ if

$$\begin{cases} u_t + (3,5) \cdot Du + 4u = 0 \text{ on } (0,\infty) \\ u(x,y,0) = \phi(x^2 + y^2), \end{cases}$$

where ϕ is the standard compactly supported function on \mathbb{R} with $\phi(s) = \exp(1/(|s|-1))$ for |s| < 1.

Solution: We fix $x \in \mathbb{R}^2$ and t and set v(s) = u(x + s(3,5), t + s). Then we find

$$v'(s) = -4v(s).$$

It follows that $v(s) = v(0)e^{-4s}$. Translating this back into terms of u, we have

$$u(x+s(3,5),t+s) = u(x,t)e^{-4s}. (1)$$

Perhaps the most obvious thing to write down next (since we're looking for u(x,t)) is

$$u(x,t) = u(x+s(3,5),t+s)e^{4s}$$
.

Of course, it looks like there is a bit of a problem with this since the right side depends on the unknown u. However, this holds for all s, and if we could choose s to make the second argument of u on the right vanish, then we could use the boundary condition to eliminate that u dependence. That is, if we take s = -t, then

$$u(x,t) = u(x - t(3,5), 0)e^{-4t} = \phi((x - 3t)^2 + (y - 5t)^2)e^{-4t}.$$

And that is a formula for the solution.

An alternative way to look at the last part of this reasoning is the following. Set t = 0 in (1). Then you get

$$u(x + s(3,5), t) = \phi(x_1^2 + x_2^2)e^{-4s}.$$

This looks almost like a formula for u(x,t), but the first argument is not really x. Rename the first argument something like $\xi = (\xi_1, \xi_2)$. Then go back and solve for x_1 and x_2 in terms of ξ and s. Then you get a formula for $u(\xi, s)$. Since you want u and don't really care about the variable names, this works just fine.

2. (25 points) (2.5.2) If $u: \mathbb{R}^2 \to \mathbb{R}$ is harmonic, show that $v(x,y) = u \circ f(x,y)$ is also harmonic if $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear orthogonal map.

Name and section	ı :
------------------	------------

Solution:

$$Dv = (Du \circ f)A$$

where A = Df is the matrix associated with f. Also,

$$D^2v = A^T(D^2u \circ f)A.$$

Thus, $\Delta v = \operatorname{trace} A^t(D^2u \circ f)A$.

On the other hand, A is a matrix of the form

$$\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)$$

where $a^2 + b^2 = 1$. Thus, computing directly we find

$$\Delta v = \operatorname{trace} \begin{pmatrix} a^2 D_{11} u + ab D_{12} u + ab D_{21} u + b^2 D_{22} u & * \\ * & b^2 D_{11} u - ab D_{12} u - ab D_{21} u + a^2 D_{22} u \end{pmatrix}$$

$$= (a^2 + b^2) D_{11} u + (b^2 + a^2) D_{22} u$$

$$= \Delta u$$

$$= 0.$$

A more sophisticated way to look at this (which also works better for the same question in general dimensions) is the following: Start with an arbitrary domain Ω in \mathbb{R}^2 .

$$\int_{\Omega} \operatorname{div} Dv = \int_{\partial \Omega} Dv \cdot n$$

$$= \int_{f(\partial \Omega)} (Dv \circ f^{-1}) \cdot (n \circ f^{-1})$$

$$= \int_{\partial f(\Omega)} Du A \cdot (n \circ f^{-1})$$

$$= \int_{\partial f(\Omega)} Du \cdot A(n \circ f^{-1})$$

$$= \int_{\partial f(\Omega)} Du \cdot \nu$$

$$= \int_{f(\Omega)} \operatorname{div} Du$$

$$= 0.$$

The first and sixth identities are the divergence theorem. The second identity is a change of variables formula. In the fifth identity, ν is the unit outward normal to $f(\Omega)$ which transforms by the rotation. Finally, since this computation holds for arbitrary Ω , we get $\Delta v = 0$.

Tame and section:

3. (25 points) (2.5.5) If $u: \mathbb{R}^2 \to \mathbb{R}$ is harmonic and $\phi: \mathbb{R} \to \mathbb{R}$ is smooth and convex, then show that $v = \phi \circ u$ is subharmonic.

Solution: Subharmonic means that the Laplacian is non-negative. Thus, we need to show $\Delta v \geq 0$. We compute:

$$D_j v = (\phi' \circ u) D_j u$$

and

$$D_{jj}v = (\phi'' \circ u)(D_j u)^2 + (\phi' \circ u)D_{jj}u.$$

Thus,

$$\Delta v = \sum_{j} (\phi'' \circ u)(D_j u)^2 + (\phi' \circ u)D_{jj}u$$

= $(\phi'' \circ u)|Du|^2 + (\phi' \circ u)\Delta u$
= $(\phi'' \circ u)|Du|^2$.

Since ϕ is convex, we know that $\phi'' \geq 0$. It follows that $\Delta v \geq 0$ as desired.

- 4. (25 points) (2.5.4) Let u be a smooth solution of Laplace's equation on $\mathcal{U} \subset \mathbb{R}^n$. Let $x_0 \in \mathcal{U}$ and consider $v(x) = u(x) + \epsilon |x x_0|^2$.
 - (i) Compute Dv and D^2v .
 - (ii) Use your computation in part (i) to show that v cannot have an interior maximum at $x = x_0$.

Solution:

(i)

$$Dv = Du + 2\epsilon(x - x_0)$$

and

$$D^2v = D^2u + 2\epsilon I.$$

(ii) If v had an interior max at x_0 , then we would have

$$u_{xx}(x_0) + 2\epsilon \le 0,$$

$$u_{yy}(x_0) + 2\epsilon \le 0.$$

Adding, we find $4\epsilon \leq 0$, which is a contradiction.