
Math 6341, Exam 1: 2.1-3 (practice) Name and section:

1. (25 points) (2.5.1) Find u : R2 × [0,∞) → R if
ut + (3, 5) ·Du + 4u = 0 on (0,∞)

u(x, y, 0) = φ(x2 + y2),

where φ is the standard compactly supported function on R with φ(s) = exp(1/(|s|−1))
for |s| < 1.

Solution: We fix x ∈ R2 and t and set v(s) = u(x + s(3, 5), t + s). Then we find

v′(s) = −4v(s).

It follows that v(s) = v(0)e−4s. Translating this back into terms of u, we have

u(x + s(3, 5), t + s) = u(x, t)e−4s. (1)

Perhaps the most obvious thing to write down next (since we’re looking for u(x, t))
is

u(x, t) = u(x + s(3, 5), t + s)e4s.

Of course, it looks like there is a bit of a problem with this since the right side
depends on the unknown u. However, this holds for all s, and if we could choose s to
make the second argument of u on the right vanish, then we could use the boundary
condition to eliminate that u dependence. That is, if we take s = −t, then

u(x, t) = u(x− t(3, 5), 0)e−4t = φ((x− 3t)2 + (y − 5t)2)e−4t.

And that is a formula for the solution.

An alternative way to look at the last part of this reasoning is the following. Set
t = 0 in (1). Then you get

u(x + s(3, 5), t) = φ(x2
1 + x2

2)e
−4s.

This looks almost like a formula for u(x, t), but the first argument is not really x.
Rename the first argument something like ξ = (ξ1, ξ2). Then go back and solve for
x1 and x2 in terms of ξ and s. Then you get a formula for u(ξ, s). Since you want u
and don’t really care about the variable names, this works just fine.

2. (25 points) (2.5.2) If u : R2 → R is harmonic, show that v(x, y) = u ◦ f(x, y) is also
harmonic if f : R2 → R

2 is a linear orthogonal map.



Name and section:

Solution:
Dv = (Du ◦ f)A

where A = Df is the matrix associated with f . Also,

D2v = AT (D2u ◦ f)A.

Thus, ∆v = trace At(D2u ◦ f)A.

On the other hand, A is a matrix of the form(
a −b
b a

)
where a2 + b2 = 1. Thus, computing directly we find

∆v = trace

(
a2D11u + abD12u + abD21u + b2D22u ∗

∗ b2D11u− abD12u− abD21u + a2D22u

)
= (a2 + b2)D11u + (b2 + a2)D22u

= ∆u

= 0.

A more sophisticated way to look at this (which also works better for the same
question in general dimensions) is the following: Start with an arbitrary domain Ω
in R

2. ∫
Ω

divDv =

∫
∂Ω

Dv · n

=

∫
f(∂Ω)

(Dv ◦ f−1) · (n ◦ f−1)

=

∫
∂f(Ω)

DuA · (n ◦ f−1)

=

∫
∂f(Ω)

Du · A(n ◦ f−1)

=

∫
∂f(Ω)

Du · ν

=

∫
f(Ω)

div Du

= 0.

The first and sixth identities are the divergence theorem. The second identity is a
change of variables formula. In the fifth identity, ν is the unit outward normal to
f(Ω) which transforms by the rotation. Finally, since this computation holds for
arbitrary Ω, we get ∆v = 0.
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3. (25 points) (2.5.5) If u : R2 → R is harmonic and φ : R→ R is smooth and convex, then
show that v = φ ◦ u is subharmonic.

Solution: Subharmonic means that the Laplacian is non-negative. Thus, we need
to show ∆v ≥ 0. We compute:

Djv = (φ′ ◦ u)Dju

and
Djjv = (φ′′ ◦ u)(Dju)2 + (φ′ ◦ u)Djju.

Thus,

∆v =
∑

(φ′′ ◦ u)(Dju)2 + (φ′ ◦ u)Djju

= (φ′′ ◦ u)|Du|2 + (φ′ ◦ u)∆u

= (φ′′ ◦ u)|Du|2.

Since φ is convex, we know that φ′′ ≥ 0. It follows that ∆v ≥ 0 as desired.

4. (25 points) (2.5.12) If u is a smooth solution of the heat equation on Rn × (0,∞), show
that

uλ(x, t) = u(λx, λ2t)

is also a solution of the heat equation for any λ ∈ R.

Solution: Recall that the heat equation has the form ut = ∆u.

Let v = uλ. Then vt(x, t) = λ2ut(λx, λ2t) by the chain rule. Similarly, Djv =
λDju(λx, λ2t), and Djjv = λ2Djju(λx, λ2t). Thus,

vt = λ2
∑

Djju(λx, λ2t)

=
∑

λ2Djju(λx, λ2t)

=
∑

Djjv

= ∆v.


