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Abstract

Here I discuss a method to construct the mean value theorem for the
heat equation. To construct such a formula abinitio, I first generalize the
method used in the mean-value theorem for the Laplace equation which
is discussed. Most of the generalization comes from using the co-area
formula and its modified version. I found out that a mean value formula
on the surface is also possible for the heat equation as in the Laplace
Equation. Both these forms and many other mean value formulae are
possible using a general mean value formula for each of the Laplace and
Heat equations.

1 Co-area Formula

I will be using the Coarea Formula given in the book (C-2 Theorem 5) and a
modified version of it as below. Following the book, the coarea formula is:

/u|DU|da: = / (/ uds)dr

Let us define U(r) and oU(r) as:
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I assume that v a function such that the set U(r) always decreases in size
with . Remember that r is not the radius but the value of the function v on
the level set.

Using U(r), I propose
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1.1 A note

I will encounter such equation but with D, v instead of Dv. For that,
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This is strange as (1.2) is same as (1.1c) with only |Dv| replaced by |D,v|.
I don’t have a good understanding why this is so, but I tried it for calculating
the volume of a sphere and it works! I am not sure but this has something to do
with the integral fan(m) 157 dx being 0 at the ends, i.e. at T1(r) and Ta(r).
The differential form of equation (1.2) will be,
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as in our case,




2 Laplace Equation

2.1 General case of v

I will try to generalize the the mean value formula using the co-area formula
discussed above.
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Using Green’s Formula,
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This gives a hint of using v which satisfies the laplace equation and makes
the first integral 0. In case of the fundamental solution ¢ or ¢(z — xo;t — o),
A¢ is a d-distribution, which gives,
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Hence,
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k(v) can be calculated by finding the limiting value as r — oo,

k(v) = lim u|Dv|
"0 Jau(r)

Equation (2.2) holds for any v that satisfies the heat equation, or like ¢ acts
as a ¢ distribution.



2.2 Special case of ¢

Let’s proceed with v = ¢(z — ). T'll use x for x — g and ¢ for ¢(x — xg).
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which is the mean value theorem for the Laplace equation. The other mean
value theorem can be derived from 2.2 as follows. I couldn’t generalize this part
more and had to use a ¢specific method. Using the fact that |Dg| is constant
on a level set, multiply both sides of 2.3 by ﬁ.
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Now, integrating from R to oo, we get
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Equations 2.4 and 2.3 are the mean value formulae pair for the Laplace
Equation. Both of these and other mean value formulas are possible from a
general mean value formula on the surface of a level set v given by 2.2. An
example of another mean value formula possible is as follows.

2.3 Example of another mean value formula

I will start with equation 2.3 and instead of multiplying by ﬁ, it is multiplied

by # (which is same as = on the surface) and then integrate.



Here, R is the value of ¢ at the surface. replacing it in terms of r (radius of

the ball), we get

u(zo) = -

3 Heat Equation

3.1 General case of v
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I try to follow the same procedure as above for the Heat Equation.
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The surface normals are characterized by 77 = B Ny = D] and ny
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This gives the following equation which is similar to (2.1).
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Similar arguments hold as before. I choose v that satisfies the heat equation
and makes the first integral 0. In case of the fundamental solution ¢ or ¢(x —
Zo;t —to), &1 + Ay is a ¢ distribution which gives,
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k(v) can be calculated by finding the limiting value as r — oo,
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Equation (3.2) holds for any v that satisfies the heat equation, or like ¢ acts
as a 0 distribution.
3.2 Special case of ¢

Let’s proceed with v = ¢(z — zg;t — to). I'll use x for  — xo, t for t — to and ¢
for ¢(x — xp).
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This gives us the surface form of the mean value theorem for the heat equa-
tion like we had in the laplace case. Now again I use a ¢ specific method.
Multiplying by T% on both sides,
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Integrating from R to oo,
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But from (1.4),
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Equations 3.5 and 3.4 are the mean value formulae pair for the Heat Equa-
tion, similar to the mean value formulae pair for the Laplace Equation. Both

of these and other many mean value formulas are possible from a general mean
value formula on the surface of a level set v given by 3.2.

I couldn’t prove the limit in 3.3. I got close to it by approximating
the integral by taking it on the cylinder enclosing it, but i think it
doesn’t converge to the given integral in the limit. My approximation

gave me
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