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Abstract

Here I discuss a method to construct the mean value theorem for the
heat equation. To construct such a formula ab initio, I first generalize the
method used in the mean-value theorem for the Laplace equation which
is discussed. Most of the generalization comes from using the co-area
formula and its modified version. I found out that a mean value formula
on the surface is also possible for the heat equation as in the Laplace
Equation. Both these forms and many other mean value formulae are
possible using a general mean value formula for each of the Laplace and
Heat equations.

1 Co-area Formula
I will be using the Coarea Formula given in the book (C-2 Theorem 5) and a
modified version of it as below. Following the book, the coarea formula is:

ˆ
Rn

u|Dv|dx =

ˆ ∞
−∞

(

ˆ
v≡r

uds) dr

Let us define U(r) and ∂U(r) as:

U(r) := {x ∈ Rn | v(x) ≤ r}
∂U(r) := {x ∈ Rn | v(x) = r}

I assume that v a function such that the set U(r) always decreases in size
with r. Remember that r is not the radius but the value of the function v on
the level set.

Using U(r), I propose
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ˆ
U(R)

u|Dv|dx =

ˆ ∞
R

(ˆ
∂U(r)

uds

)
dr (1.1a)

∂

∂R

ˆ
U(R)

u|Dv|dx = −
ˆ
∂U(r)

uds (1.1b)

ˆ
U(R)

udx =

ˆ ∞
R

(ˆ
∂U(r)

u

|Dv|
ds

)
dr (1.1c)

∂

∂R

ˆ
U(R)

udx = −

(ˆ
∂U(r)

u

|Dv|
ds

)
dr (1.1d)

1.1 A note
I will encounter such equation but with Dxv instead of Dv. For that,

ˆ
U(R)

udx =

ˆ T2(R)

T1(R)

(ˆ
Ux(R,t)

udx

)
dt

=

ˆ T2(R)

T1(R)

(ˆ ∞
R

ˆ
∂Ux(r,t)

u

|Dxv|
dx dr

)
dt

=

ˆ ∞
R

ˆ T2(R)

T1(R)

ˆ
∂Ux(r,t)

u

|Dxv|
dx dt dr

Note that the integral
´ T2(R)

T1(R)
can be replaced by

´ T2(r)

T1(r)
as in our case,

∂T1(r)
∂r ≥ 0 and ∂T2(r)

∂r ≤ 0, due to the kinds of v we are considering. This
gives us,

ˆ
U(R)

udx =

ˆ ∞
R

ˆ T2(r)

T1(r)

ˆ
∂Ux(r,t)

u

|Dxv|
dx dt dr

=

ˆ ∞
R

(ˆ
∂U(r)

u

|Dxv|
ds

)
dr (1.2)

This is strange as (1.2) is same as (1.1c) with only |Dv| replaced by |Dxv|.
I don’t have a good understanding why this is so, but I tried it for calculating
the volume of a sphere and it works! I am not sure but this has something to do
with the integral

´
∂Ux(r,t)

u
|Dxv| dx being 0 at the ends, i.e. at T1(r) and T2(r).

The differential form of equation (1.2) will be,

∂

∂R

ˆ
U(R)

udx = −

(ˆ
∂U(r)

u

|Dxv|
ds

)
dr (1.3)

and
∂

∂R

ˆ
U(R)

u|Dxv|dx = −

(ˆ
∂U(r)

uds

)
dr (1.4)
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2 Laplace Equation

2.1 General case of v
I will try to generalize the the mean value formula using the co-area formula
discussed above.

0 = ∆u

=

ˆ
U(r)

∆u

=

ˆ
∂U(r)

~Du · ~n

The surface normal ~n =
~Dv
|Dv| . Now using 1.1d

0 =

ˆ
∂U(r)

~Du · ~Dv
|Dv|

=
∂

∂r

ˆ
U(r)

~Du · ~Dv

Using Green’s Formula,

0 = − ∂

∂r

ˆ
U(r)

u∆v +
∂

∂r

ˆ
∂U(r)

u
~Dv · ~Dv
|Dv|

= − ∂

∂r

ˆ
U(r)

u∆v +
∂

∂r

ˆ
∂U(r)

u|Dv| (2.1)

This gives a hint of using v which satisfies the laplace equation and makes
the first integral 0. In case of the fundamental solution φ or φ(x − x0; t − t0),
∆φ is a δ-distribution, which gives,

∂

∂r

ˆ
U(r)

u∆xφ =
∂

∂r
u(x0) = 0

Hence,

∂

∂r

ˆ
∂U(r)

u|Dv| = 0

or

ˆ
∂U(r)

u|Dv| = constant

:= k(v) (2.2)

k(v) can be calculated by finding the limiting value as r →∞,

k(v) = lim
r→∞

ˆ
∂U(r)

u|Dv|

Equation (2.2) holds for any v that satisfies the heat equation, or like φ acts
as a δ distribution.
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2.2 Special case of φ
Let’s proceed with v = φ(x− x0). I’ll use x for x− x0 and φ for φ(x− x0).

k(φ) = lim
r→∞

ˆ
∂U(r)

u|Dφ|

= u(x0)

Hence,

u(x0) =

ˆ
∂U(r)

u|Dφ|

= |Dφ|
ˆ
∂U(r)

u

=
1

nα(n)|x− x0|n−1

ˆ
∂U(r)

u

∴ u(x0) =

 
∂U(r)

u (2.3)

which is the mean value theorem for the Laplace equation. The other mean
value theorem can be derived from 2.2 as follows. I couldn’t generalize this part
more and had to use a φspecific method. Using the fact that |Dφ| is constant
on a level set, multiply both sides of 2.3 by 1

|Dφ|2 .

ˆ
∂U(r)

u

|Dφ|
= u(x0)

1

|Dφ|2

Now, integrating from R to ∞, we get

ˆ ∞
R

ˆ
∂U(r)

u

|Dφ|
= u(x0)

ˆ ∞
R

1

|Dφ|2

⇒
ˆ
U(r)

u = (α(n)|x− x0|n)u(x0)

∴
 
U(r)

u = u(x0) (2.4)

Equations 2.4 and 2.3 are the mean value formulae pair for the Laplace
Equation. Both of these and other mean value formulas are possible from a
general mean value formula on the surface of a level set v given by 2.2. An
example of another mean value formula possible is as follows.

2.3 Example of another mean value formula
I will start with equation 2.3 and instead of multiplying by 1

|Dφ|2 , it is multiplied
by 1

φ2 (which is same as 1
r2 on the surface) and then integrate.
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u(x0) =

ˆ
∂U(r)

u|Dφ|

u(x0)

ˆ ∞
R

1

r2
=

ˆ ∞
R

ˆ
∂U(r)

u
|Dφ|
φ2

u(x0)

R
= (n− 2)2

ˆ
U(R)

u

|x|2

∴ u(x0) = R(n− 2)2
ˆ
U(R)

u

|x|2

Here, R is the value of φ at the surface. replacing it in terms of r (radius of
the ball), we get

u(x0) =
(n− 2)r2

n

 
Br(x0)

u

|x|2

3 Heat Equation

3.1 General case of v
I try to follow the same procedure as above for the Heat Equation.

ut = −∆xuˆ
U

ut = −
ˆ
U

∆xu

ˆ
∂U

unt = −
ˆ
∂U

~Dxu · −→n

The surface normals are characterized by ~n =
~Dv
|Dv| , ~nx =

~Dxv
|Dxv| and nt =

~n · t̂ = vt
|Dv| . Hence,

ˆ
∂U(r)

u
vt
|Dv|

= −
ˆ
∂U(r)

~Dxu · ~Dxv

|Dxv|

Using (1.3),

∂

∂r

ˆ
U(r)

uvt =
∂

∂r

ˆ
U(r)

~Dxu · ~Dxv

Using Green’s Formula,

∂

∂r

ˆ
U(r)

uvt =
∂

∂r

ˆ T2

T1

(
−
ˆ
Ux(r,t)

u∆xv +

ˆ
∂Ux(r,t)

u
~Dxv · ~Dxv

|Dxv|

)

= − ∂

∂r

(ˆ
U(r)

u∆xv

)
+

∂

∂r

(ˆ
∂U(r)

u|Dxv|

)
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This gives the following equation which is similar to (2.1).

∴ 0 = − ∂

∂r

ˆ
U(r)

u (vt + ∆xv) +
∂

∂r

ˆ
∂U(r)

u|Dxv| (3.1)

Similar arguments hold as before. I choose v that satisfies the heat equation
and makes the first integral 0. In case of the fundamental solution φ or φ(x −
x0; t− t0), φt + ∆xφ is a δ distribution which gives,

∂

∂r

ˆ
U(r)

u (φt + ∆xφ) =
∂

∂r
u(x0; t0) = 0

Hence,

∂

∂r

ˆ
∂U(r)

u|Dxv| = 0

or

ˆ
∂U(r)

u|Dxv| = constant

:= kv (3.2)

k(v) can be calculated by finding the limiting value as r →∞,

kv = lim
r→∞

ˆ
∂U(r)

u|Dxv|

Equation (3.2) holds for any v that satisfies the heat equation, or like φ acts
as a δ distribution.

3.2 Special case of φ
Let’s proceed with v = φ(x− x0; t− t0). I’ll use x for x− x0, t for t− t0 and φ
for φ(x− x0).

kφ = lim
r→∞

ˆ
∂U(r)

u|Dxφ|

= u(x0; t0) (3.3)

Now, |Dxφ| = − |x|2t φ which gives,

kφ =

ˆ
∂U(r)

u|Dxφ|

=

ˆ
∂U(r)

u
φ

2t
|x|

=

ˆ
∂U(r)

u
|x|
2t
r

∴ u(x0; t0) =
r

2

ˆ
∂U(r)

u
|x|
t

(3.4)
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This gives us the surface form of the mean value theorem for the heat equa-
tion like we had in the laplace case. Now again I use a φ specific method.
Multiplying by 1

r2 on both sides,

1

r2

ˆ
∂U(r)

u
|x|
2t
r = −kφ

1

r2

∴
ˆ
∂U(r)

u
|x|
2t

1

r
= −kφ

1

r2

Integrating from R to ∞,

ˆ ∞
R

ˆ
∂U(r)

u
|x|
2t

1

r
= −kφ

ˆ ∞
R

1

r2

=
kφ
R

But from (1.4),

ˆ ∞
R

ˆ
∂U(r)

u
|x|
2t

1

r
=

ˆ
U(R)

u
|x|
2t

1

r
|Dxφ|

=

ˆ
U(R)

u
|x|
2t

1

r
(r
|x|
2t

)

=

ˆ
U(R)

u
|x|2

4t2

∴ u(x0; t0) =
R

4

ˆ
U(R)

u
|x|2

t2
(3.5)

Equations 3.5 and 3.4 are the mean value formulae pair for the Heat Equa-
tion, similar to the mean value formulae pair for the Laplace Equation. Both
of these and other many mean value formulas are possible from a general mean
value formula on the surface of a level set v given by 3.2.

I couldn’t prove the limit in 3.3. I got close to it by approximating
the integral by taking it on the cylinder enclosing it, but i think it
doesn’t converge to the given integral in the limit. My approximation
gave me

kφ =

(
nα(n)

( n

2πe

)n/2 e

2

)
u(x0; t0)
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