Math 6341, Final Exam: Various Topics Name:

1. (25 points) (3.5.9-10, Hamilton-Jacobi PDE)

(a) Define the convex dual (Legendre transform) of a function H : R — R.

(b) Write down the Hopf-Lax formula associated with the IVP

{ ur + H(Du) =0
u(z,0) = up(x).

(c) Give conditions on the Hamiltonian H and the initial function uy under which your
formula from part (b) provides a solution of the IVP. (Explain)

Solution:

(a)
H*(v) = Sl;p{p v —H(p)}.

(b) The Hopf-Lax formula is

u(z,t) = min {tL (x - g) + uo(ﬁ)}

£ERm

where L = H* is given in (a) above.

(c) In order for the Hopf-Lax formula to be well defined, we need that L is convex
satisfying
L)
lim = 400

|v|—o0 ‘U|

and wug Lipschitz continuous.

The conditions on L will hold if H is convex and satisfies

H
m ﬂ = +0o0
pl—oc [P

The Hopf-Lax formula provides a weak solution for the IVP if we assume in
addition that either H is uniformly convex or ug is semi-concave.

Under either of these assumptions, the solution obtained will be unique.
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2. (25 points) (Green’s Functions for Laplace’s PDE, §2.2.4) If u,v € C?(Q) satisfy

Au=f
U‘ = Uy,

o2

and

Av =0
{ U(&)‘ = CI)(§—€6)}5 i

where @ is the fundamental solution of Laplace’s PDE;, then find a formula expressing
| ate-npu(e)n
£eon

where n is the outward normal to OS2 in terms of f, ug, v, and Dwv.

Solution: By the divergence theorem

/Q(um — vAu) = / (uDv-n —vDu-n).

o0

Substituting from the boundary value problems, this becomes

—/Qvf:/E)QuoDv-n—/éeaﬂCI)(g—x)Du(ﬁ)-n.

/gefm@(g—x)Du(g)-nz/QvH/muoDv-n.
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3. (25 points) (4.7.2) Find a separated variables solution of

Au =0 on R?
u(z,0) =0, wuy(z,0)=sinz.

Explain your reasoning carefully.

Solution: Setting u = f(x)g(y), we obtain away from f = 0 or g = 0 a separation
constant A such that o ;
_ 9

L=\
g

Thus, we obtain two ODEs
f"=-=X\f and ¢’ = \g.

The first boundary condition gives f(z)g(0) = 0 from which we conclude ¢g(0) = 0,
since f(z) = 0 cannot lead to a solution satisfying the other boundary condition.

The second boundary condition is f(z)g’(0) = sinx. Therefore,

sin x
flx) = —.
@) g'(0)
It follows from this that f” = —f. In view of the first ODE, we must have A = 1.

The second ODE with the first boundary condition then yeilds

g(y) = ¢'(0) sinhy.

The solution is thus,
u(z,y) = f(z)g(y) = sinhysinz.
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4. (25 points) (Fourier Transform, §4.3.1)

(a) Give an example showing that L'(R") is not a subset of L*(R™). Justify your asser-
tion.

(b) Give an example showing that L?*(R") is not a subset of L'(R"). Justify your
assertion.

(¢) For uw € L*(R")\L'(R"), assume there are two sequences of functions u; € L*(R") N
LY(R™) with |u; — u|z2 — 0 and @; € L*(R™) N LY(R™) with |@; — u|z2 — 0. Using
Plancharel’s Theorem, it can be shown that there are functions v and © both in
L2(R") with A

|?lj—U|L2 — 0 and ‘ﬂj—’[]‘[ﬁ — 0.
Show that v = 2.

Solution:

@ lal™12, 0 < o]
1/jx|"=4 0<|z| <1
“<“””>—{o, £ =0, 2] > 1

has u € L'\L?.

! 1
Jui=[ (], =)
1
:nwn/ r=2 dr
0

1/2

= 2nw,r "1

r=0

= 2nw,

< Q.

B 0 5B, r2n—1
1
= nwn/ r~"dr
0

=n(l —n)w,r "

r=0

= +o00.

) n
u(z) :{ /]z|™, |z|>1

0, lz] <1
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(c)

has u € L*\L'.

= ()
= /100(1/7") dr

= nwy, log(r)

[e')

r=1

= Q.

o 1
/hﬁ=i/ (/ _T)dr
1 aB, ™"
= nwn/ r—ldr
1

n
oo

= —wpr

r=1

|1~)—U|L2 = lim |'l:Lj _ﬁj|L2

J—00

. ~/—\
= lim |Uj — uj‘L2

J—00

= lm [a; —u;]p

J—00

< lim |@; — u|g2 + |u — uj| L2
j—o0

= 0.

The first equality uses the continuity of the L? norm which can be further
justified by the L? triangle inequality as follows

gle> = [fle2l < lg = flee.

Thus, when ¢ is close to f in L2, the norms of g and f are also close to each
other.

The third equality uses Plancharel’s Theorem.




