
Math 6341, Final Exam: Various Topics Name:

1. (25 points) (3.5.9-10, Hamilton-Jacobi PDE)

(a) Define the convex dual (Legendre transform) of a function H : Rn → R.

(b) Write down the Hopf-Lax formula associated with the IVP

{

ut + H(Du) = 0
u(x, 0) = u0(x).

(c) Give conditions on the Hamiltonian H and the initial function u0 under which your
formula from part (b) provides a solution of the IVP. (Explain)

Solution:

(a)
H∗(v) = sup

p
{p · v − H(p)}.

(b) The Hopf-Lax formula is

u(x, t) = min
ξ∈Rn

{

tL

(

x − ξ

t

)

+ u0(ξ)

}

where L = H∗ is given in (a) above.

(c) In order for the Hopf-Lax formula to be well defined, we need that L is convex
satisfying

lim
|v|→∞

L(v)

|v|
= +∞

and u0 Lipschitz continuous.

The conditions on L will hold if H is convex and satisfies

lim
|p|→∞

H(p)

|p|
= +∞.

The Hopf-Lax formula provides a weak solution for the IVP if we assume in
addition that either H is uniformly convex or u0 is semi-concave.

Under either of these assumptions, the solution obtained will be unique.



Name:

2. (25 points) (Green’s Functions for Laplace’s PDE, §2.2.4) If u, v ∈ C2(Ω̄) satisfy

{

∆u = f
u∣

∣

∂Ω

= u0,

and
{

∆v = 0
v(ξ)∣

∣

ξ∈∂Ω

= Φ(ξ − x)∣
∣

ξ∈∂Ω

,

where Φ is the fundamental solution of Laplace’s PDE, then find a formula expressing

∫

ξ∈∂Ω

Φ(ξ − x)Du(ξ) · n

where n is the outward normal to ∂Ω in terms of f , u0, v, and Dv.

Solution: By the divergence theorem

∫

Ω

(u∆v − v∆u) =

∫

∂Ω

(uDv · n − vDu · n).

Substituting from the boundary value problems, this becomes

−

∫

Ω

vf =

∫

∂Ω

u0Dv · n −

∫

ξ∈∂Ω

Φ(ξ − x)Du(ξ) · n.

Thus,
∫

ξ∈∂Ω

Φ(ξ − x)Du(ξ) · n =

∫

Ω

vf +

∫

∂Ω

u0Dv · n.



Name:

3. (25 points) (4.7.2) Find a separated variables solution of

{

∆u = 0 on R2

u(x, 0) = 0, uy(x, 0) = sin x.

Explain your reasoning carefully.

Solution: Setting u = f(x)g(y), we obtain away from f = 0 or g = 0 a separation
constant λ such that

−
f ′′

f
=

g′′

g
= λ.

Thus, we obtain two ODEs

f ′′ = −λf and g′′ = λg.

The first boundary condition gives f(x)g(0) = 0 from which we conclude g(0) = 0,
since f(x) = 0 cannot lead to a solution satisfying the other boundary condition.

The second boundary condition is f(x)g′(0) = sin x. Therefore,

f(x) =
sin x

g′(0)
.

It follows from this that f ′′ = −f . In view of the first ODE, we must have λ = 1.
The second ODE with the first boundary condition then yeilds

g(y) = g′(0) sinh y.

The solution is thus,
u(x, y) = f(x)g(y) = sinh y sin x.



Name:

4. (25 points) (Fourier Transform, §4.3.1)

(a) Give an example showing that L1(Rn) is not a subset of L2(Rn). Justify your asser-
tion.

(b) Give an example showing that L2(Rn) is not a subset of L1(Rn). Justify your
assertion.

(c) For u ∈ L2(Rn)\L1(Rn), assume there are two sequences of functions uj ∈ L2(Rn) ∩
L1(Rn) with |uj − u|L2 → 0 and ũj ∈ L2(Rn) ∩ L1(Rn) with |ũj − u|L2 → 0. Using
Plancharel’s Theorem, it can be shown that there are functions v and ṽ both in
L2(Rn) with

|ûj − v|L2 → 0 and |ˆ̃uj − ṽ|L2 → 0.

Show that v = ṽ.

Solution:

(a)

u(x) =

{

1/|x|n−1/2, 0 < |x| < 1
0, x = 0, |x| ≥ 1

has u ∈ L1\L2.

∫

|u| =

∫ 1

0

(
∫

∂Br

1

rn−1/2

)

dr

= nωn

∫ 1

0

r−1/2 dr

= 2nωnr
1/2

∣

∣

1

r=0

= 2nωn

< ∞.

∫

|u|2 =

∫ 1

0

(
∫

∂Br

1

r2n−1

)

dr

= nωn

∫

1

0

r−n dr

= n(1 − n)ωnr
−n+1

∣

∣

1

r=0

= +∞.

(b)

u(x) =

{

1/|x|n, |x| > 1
0, |x| ≤ 1
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has u ∈ L2\L1.

∫

|u| =

∫ ∞

1

(
∫

∂Br

1

rn

)

dr

= nωn

∫ ∞

1

(1/r) dr

= nωn log(r)∣
∣

∞

r=1

= ∞.

∫

|u|2 =

∫ ∞

1

(
∫

∂Br

1

r2n

)

dr

= nωn

∫ ∞

1

r−n−1 dr

= −ωnr−n
∣

∣

∞

r=1

= ωn

< ∞.

(c)

|ṽ − v|L2 = lim
j→∞

|ˆ̃uj − ûj|L2

= lim
j→∞

|˜̂uj − uj|L2

= lim
j→∞

|ũj − uj|L2

≤ lim
j→∞

|ũj − u|L2 + |u − uj|L2

= 0.

The first equality uses the continuity of the L2 norm which can be further
justified by the L2 triangle inequality as follows

||g|L2 − |f |L2| ≤ |g − f |L2.

Thus, when g is close to f in L2, the norms of g and f are also close to each
other.

The third equality uses Plancharel’s Theorem.


