
Math 6327 Real Analysis Problems for 3.1 and 3.2

1. Show that if µ is a signed measure and 0 < µE < ∞, then E contains a positive set.
(Hint: Use the Hahn decomposition directly.)

2. We have proved the Lebesgue-Radon-Nikodym Theorem (Theorem 3.8) for nonnegative
finite measures. Complete the following to verify the theorem for nonnegative σ-finite
measures.

(a) Let µ and ν be (nonnegative) σ-finite measures. There exist disjoint setsX1, X2, . . .

such that
ν(Xj), µ(Xj) <∞ ∀ j.

(b) Apply the theorem to νjE := ν(E∩Xj) and µjE := µ(E∩Xj) to obtain Lebesgue
decompositions

νj = (νj)
⊥ + (νj)0

and Radon-Nikodym derivatives

(νj)0E =

∫

E

fj.

Show that one may assume the following:

i. fj : X → [0,∞),

ii. fj|Xc
j
≡ 0,

iii. fj ∈ L1.

Consider ν⊥ =
∑

(νj)
⊥, ν0 =

∑

(νj)0, and f =
∑

fj. (ν⊥ and ν0 are nonnegative
measures; f is a nonnegative measurable function.)

(c) Show that ν = ν⊥ + ν0.

(d) Show that ν⊥ ⊥ µ.

(e) Show that ν0 � µ.

From (c–e) we see that ν has a Lebesgue decomposition.

(f) Show that ν0E =
∫

E
f , so that the existence of the Radon-Nikodym derivative

holds as well.

(g) (Uniqueness of ν⊥ and ν0) Let ν = λ⊥ + λ0 give another Lebesgue decomposition
of ν. Set

(λ⊥)jE := λ⊥(E ∩Xj) and (λ0)jE := λ0(E ∩Xj).

(These are finite nonnegative measures.) Show that νj = (λ⊥)j + (λ0)j gives
a Lebesgue decomposition of νj. Thus, by the uniqueness in the finite case,
(νj)

⊥ = (λ⊥)j and (νj)0 = (λ0)j. Show from this that λ⊥ = ν⊥ and λ0 = ν0.

(h) (Uniqueness of f) Assume ν0E =
∫

E
g for some g ≥ 0. Define (ν⊥)jE := ν⊥(E ∩

Xj) and (ν0)jE := ν0(E ∩ Xj) =
∫

E
gχXj

. Show that (ν⊥)j = (νj)
⊥ which is

unique and (ν0)j = (νj)0 which is also unique. Conclude from the uniqueness of
fj that gχXj

= fj. Show that g =
∑

gχXj
=

∑

fj = f a.e. [µ].
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3. In the problem above one proves the Lebesgue-Radon-Nikodym theorem for nonnega-
tive σ-finite measures. Complete the following verifying the theorem for σ-finite mea-
sures µ and ν with ν a signed measure.

(a) ν+ and ν− are nonnegative σ-finite measures. (They are also orthogonal.) We
have, therefore, unique Lebesgue decompositions

ν+ = (ν+)⊥ + (ν+)0

and
ν− = (ν−)⊥ + (ν−)0.

Show that
ν =

[

(ν+)⊥ − (ν−) ⊥
]

+
[

(ν+)0 − (ν−)0

]

is a Lebesgue decomposition for ν.

(b) According to the previous part (a), set

ν⊥ = (ν+)⊥ − (ν−)⊥

ν0 = (ν+)0 − (ν−)0.

From the nonnegative case, ∃ f, g ≥ 0 s.t.

(ν+)0E =

∫

E

f

and

(ν−)0E =

∫

E

g.

Show that φ = f − g is a Radon-Nikodym derivative for ν0. (You also need to
explain why φ− ∈ L1.)

(c) (Uniqueness of ν⊥ and ν0) Let ν = λ⊥ + λ0 be another Lebesgue decomposition
for ν.

Let X = Λ
⊎

M be Lebesgue decomposition sets for λ⊥ and µ, i.e., M is null for
λ⊥ and µΛ = 0.

i. Show that λ⊥ ⊥ λ0 and Λ is null for Λ0.

ii. Show that Λ is null for (λ0)
± and M is null for (λ⊥)± (n.b. Ex. 3.1.2)

iii. Show that the Jordan decomposition of ν is given by

ν± = (λ⊥)± + (λ0)
±. (1)

(Hint: This is a bit tricky — I think. Let X = A
⊎

B = A⊥
⊎

B⊥ =
A0

⊎

B0 be the Hahn decompositions for ν, λ⊥, and λ0 respectively; show
[

(λ⊥)+ + (λ0)
+
]

A = 0 by contradiction using the fact that

[

(λ⊥)+ + (λ0)
⊥
]

A = (λ⊥)+(A ∩ Λ) + (λ0)
+(A ∩M)

= (λ⊥)+(A ∩ Λ ∩ B⊥) + (λ0)
+(A ∩M ∩B0).)
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iv. Show that the Lebesgue decompositions for ν± are given in (1).

v. Use the uniqueness of the Lebesgue decompositions in (1) to conclude that
(ν±)⊥ = (λ⊥)± and (ν±)0 = (λ0)

±.

vi. Show that λ⊥ = ν⊥ and λ0 = ν0.

(d) (Uniqueness of Radon-Nikodym derivative) Use φ ≡ f − g from 3(b) above and
assume ψ satisfies

ψ− ∈ L1

ν0E =

∫

E

ψ =

∫

E

ψ+ −

∫

E

ψ− ∀ E.

i. Show that the Lebesgue decompositions of ν± are given by

ν±E = (ν±)⊥E +

∫

E

ψ±.

ii. Use the uniqueness of Lebesgue decompositions in the nonnegative case to
conclude that

∫

E

f =

∫

E

ψ− ∀ E

∫

E

g =

∫

E

ψ+ ∀ E.

iii. Use the conclusion of (ii) to show ψ = φ a.e. [µ].
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