Math 6327 Real Analysis

- 1. Show that if μ is a signed measure and $0 < \mu E < \infty$, then E contains a positive set. (Hint: Use the Hahn decomposition directly.)
- 2. We have proved the Lebesgue-Radon-Nikodym Theorem (Theorem 3.8) for nonnegative finite measures. Complete the following to verify the theorem for nonnegative σ -finite measures.
 - (a) Let μ and ν be (nonnegative) σ -finite measures. There exist disjoint sets X_1, X_2, \ldots such that

$$\nu(X_j), \mu(X_j) < \infty \quad \forall j.$$

(b) Apply the theorem to $\nu_j E := \nu(E \cap X_j)$ and $\mu_j E := \mu(E \cap X_j)$ to obtain Lebesgue decompositions

$$\nu_j = (\nu_j)^\perp + (\nu_j)_0$$

and Radon-Nikodym derivatives

$$(\nu_j)_0 E = \int_E f_j.$$

Show that one may assume the following:

- i. $f_j: X \to [0, \infty),$
- ii. $f_j|_{X_i^c} \equiv 0$,
- iii. $f_i \in L^1$.

Consider $\nu^{\perp} = \sum (\nu_j)^{\perp}$, $\nu_0 = \sum (\nu_j)_0$, and $f = \sum f_j$. (ν^{\perp} and ν_0 are nonnegative measures; f is a nonnegative measurable function.)

- (c) Show that $\nu = \nu^{\perp} + \nu_0$.
- (d) Show that $\nu^{\perp} \perp \mu$.
- (e) Show that $\nu_0 \ll \mu$. From (c–e) we see that ν has a Lebesgue decomposition.
- (f) Show that $\nu_0 E = \int_E f$, so that the existence of the Radon-Nikodym derivative holds as well.
- (g) (Uniqueness of ν^{\perp} and ν_0) Let $\nu = \lambda^{\perp} + \lambda_0$ give another Lebesgue decomposition of ν . Set

$$(\lambda^{\perp})_j E := \lambda^{\perp} (E \cap X_j) \text{ and } (\lambda_0)_j E := \lambda_0 (E \cap X_j).$$

(These are finite nonnegative measures.) Show that $\nu_j = (\lambda^{\perp})_j + (\lambda_0)_j$ gives a Lebesgue decomposition of ν_j . Thus, by the uniqueness in the finite case, $(\nu_j)^{\perp} = (\lambda^{\perp})_j$ and $(\nu_j)_0 = (\lambda_0)_j$. Show from this that $\lambda^{\perp} = \nu^{\perp}$ and $\lambda_0 = \nu_0$.

(h) (Uniqueness of f) Assume $\nu_0 E = \int_E g$ for some $g \ge 0$. Define $(\nu^{\perp})_j E := \nu^{\perp} (E \cap X_j)$ and $(\nu_0)_j E := \nu_0 (E \cap X_j) = \int_E g \chi_{X_j}$. Show that $(\nu^{\perp})_j = (\nu_j)^{\perp}$ which is unique and $(\nu_0)_j = (\nu_j)_0$ which is also unique. Conclude from the uniqueness of f_j that $g\chi_{X_j} = f_j$. Show that $g = \sum g \chi_{X_j} = \sum f_j = f$ a.e. $[\mu]$.

- 3. In the problem above one proves the Lebesgue-Radon-Nikodym theorem for nonnegative σ -finite measures. Complete the following verifying the theorem for σ -finite measures μ and ν with ν a signed measure.
 - (a) ν^+ and ν^- are nonnegative σ -finite measures. (They are also orthogonal.) We have, therefore, unique Lebesgue decompositions

$$\nu^+ = (\nu^+)^\perp + (\nu^+)_0$$

and

$$\nu^{-} = (\nu^{-})^{\perp} + (\nu^{-})_{0}.$$

Show that

$$\nu = \left[(\nu^+)^{\perp} - (\nu^-)^{\perp} \right] + \left[(\nu^+)_0 - (\nu^-)_0 \right]$$

is a Lebesgue decomposition for ν .

(b) According to the previous part (a), set

$$\nu^{\perp} = (\nu^{+})^{\perp} - (\nu^{-})^{\perp}$$
$$\nu_{0} = (\nu^{+})_{0} - (\nu^{-})_{0}.$$

From the nonnegative case, $\exists f, g \ge 0$ s.t.

$$(\nu^+)_0 E = \int_E f$$

and

$$(\nu^-)_0 E = \int_E g.$$

Show that $\phi = f - g$ is a Radon-Nikodym derivative for ν_0 . (You also need to explain why $\phi^- \in L^1$.)

(c) (Uniqueness of ν^{\perp} and ν_0) Let $\nu = \lambda^{\perp} + \lambda_0$ be another Lebesgue decomposition for ν .

Let $X = \Lambda \biguplus M$ be Lebesgue decomposition sets for λ^{\perp} and μ , i.e., M is null for λ^{\perp} and $\mu \Lambda = 0$.

- i. Show that $\lambda^{\perp} \perp \lambda_0$ and Λ is null for Λ_0 .
- ii. Show that Λ is null for $(\lambda_0)^{\pm}$ and M is null for $(\lambda^{\perp})^{\pm}$ (n.b. Ex. 3.1.2)

iii. Show that the Jordan decomposition of ν is given by

$$\nu^{\pm} = (\lambda^{\perp})^{\pm} + (\lambda_0)^{\pm}. \tag{1}$$

(Hint: This is a bit tricky — I think. Let $X = A \biguplus B = A^{\perp} \biguplus B^{\perp} = A_0 \biguplus B_0$ be the Hahn decompositions for ν , λ^{\perp} , and λ_0 respectively; show $[(\lambda^{\perp})^+ + (\lambda_0)^+] A = 0$ by contradiction using the fact that

$$[(\lambda^{\perp})^+ + (\lambda_0)^{\perp}] A = (\lambda^{\perp})^+ (A \cap \Lambda) + (\lambda_0)^+ (A \cap M)$$

= $(\lambda^{\perp})^+ (A \cap \Lambda \cap B^{\perp}) + (\lambda_0)^+ (A \cap M \cap B_0).)$

- iv. Show that the Lebesgue decompositions for ν^{\pm} are given in (1).
- v. Use the uniqueness of the Lebesgue decompositions in (1) to conclude that $(\nu^{\pm})^{\perp} = (\lambda^{\perp})^{\pm}$ and $(\nu^{\pm})_0 = (\lambda_0)^{\pm}$.
- vi. Show that $\lambda^{\perp} = \nu^{\perp}$ and $\lambda_0 = \nu_0$.
- (d) (Uniqueness of Radon-Nikodym derivative) Use $\phi \equiv f g$ from 3(b) above and assume ψ satisfies $\psi^- \in L^1$

$$\nu_0 E = \int_E \psi = \int_E \psi^+ - \int_E \psi^- \qquad \forall E$$

i. Show that the Lebesgue decompositions of ν^{\pm} are given by

$$\nu^{\pm}E = (\nu^{\pm})^{\perp}E + \int_E \psi^{\pm}.$$

ii. Use the uniqueness of Lebesgue decompositions in the nonnegative case to conclude that

$$\int_{E} f = \int_{E} \psi^{-} \qquad \forall E$$
$$\int_{E} g = \int_{E} \psi^{+} \qquad \forall E.$$

iii. Use the conclusion of (ii) to show $\psi = \phi$ a.e. $[\mu]$.