- 1. Use the dominated convergence theorem for real valued functions to prove the dominated convergence theorem for complex valued functions.
- 2. Let $\mathcal{M}_{\alpha} = \mathcal{M}(\mathcal{E}_{\alpha})$ be the σ -algebra on X_{α} generated by the sets in \mathcal{E}_{α} where $\alpha \in \Gamma$ and Γ is a countable indexing set. Define

$$\mathcal{E}_0 = \bigcup_{\alpha \in \Gamma} \{ \pi_\alpha^{-1} E : E \in \mathcal{E}_\alpha \}.$$

Show that

$$\tilde{\mathscr{M}} = \{ A \subset X_{\alpha} : \pi_{\alpha}^{-1} A \in \mathcal{M}(\mathcal{E}_0) \}$$

is a σ -algebra.

- 3. Every separable metric space is second countable; \mathbb{R}^n is second countable.
- 4. Given two measure spaces X_1, \mathcal{M}_1 and X_2, \mathcal{M}_2 , define

$$\tilde{\mathscr{M}} = \{ \tilde{E} \subset X_1 \times X_2 : \{ x \in X_1 : (x, x_2) \in \tilde{E} \} \in \mathscr{M}_1 \text{ for all } x_2 \in X_2 \}.$$

Show that $\tilde{\mathcal{M}}$ is a σ -algebra containing all rectangles.