Math 6327 Real Analysis Exam 1 (Solutions—odds)

1. The statement of this problem requires some correction. (See corrected exam.) In
particular, part (c) is not possible if the lower semicontinuous function f is not bounded
below, and this is quite possible if the domain of f is (0, 1) as indicated in the problem,
e.g., f(x) = —1/z. In addition, part (e) implicitly, and part (f) explicitly, consider the
domain of definition to be [0, 1].

We therefore invoke the universal instruction: Solve the given problems — unless the
problem is incorrectly stated. If the problem is incorrectly stated, figure out the correct
statement, and solve that problem.

Let us make a new definition: Given any subset £ C R, f is lower semicontinuous at
xo € Eif
f(zo) < liminf f(z).

E>x—xo

(The definition of liminf is:

liminf f(z) =liminf{f(z) 12 € E, 0 < |x — xo| < 0}.)
E>x—xg 3—0
(a) Recall that f is continuous at a point xq if f is defined in a neighborhood of zg
and

lim f(x) = f(zo). (1)

T—To

(In the case xq is an endpoint of an interval on which f is defined, say [zq, o+ ),
we assume f(x) = f(xg) for x < zp.) Assuming the domain of definition is (0, 1) as
given in the problem, there is no question about being defined in a neighborhood
of each point, and f is continuous at xg

< liminf f(z) = f(xo) = limsup f(x) (2)

Tr—2T0 T—x0

< liminf f(z) > f(zo) and f(xg) > limsup f(z)

Tr—2T0 T—x0

< f is lower and upper semicontinuous.

(b) By Proposition 2.3 it is enough to show that {z € (0,1) : f(x) > a} is a Borel
set whenever a € R. In fact, this set is open: Assume f(z) > a. We claim
that f(x) > a for x in some ball Br(zy). Otherwise, there exists a sequence
xj — xo s.t. f(z;) < a. Thus, by semicontinuity f(zo) < liminf f(z;) < a,
which contradicts the fact that f(zg) > a. Thus, for some r > 0, we have
Br(xzg) C{z € (0,1): f(x) > a}, and the set is open.

(c) Here we (must) assume f :[0,1] — R. For each j =0,1,2,...,2" — 1. Consider

v = inf f(2)

"Ee[—n,Jzinl]

¥



We claim v; > —oo. Otherwise, there exists a sequence §; € [0, 1] with f(&;) \,
—o00. By taking a subsequence, we may assume §; — zo € [0,1]. By lower
semicontinuity;,

flao) < liminf f(z) < lim f(&;) = —oc.

T—T0

This contradicts the fact that f is real valued.

Observation: We have just shown that every lower semicontinuous function
f:]0,1] — R is bounded below. (See part (e).) Furthermore, replacing —oo with
m = inf{f(z) : x € [0, 1]} in the reasoning above we find,

m < f(zo) < lim f(&;) = m.

Thus, f attains its minimum value on [0, 1]. (This is the solution to part (e).)

Returning to part (c), we know v; € R, j =1,...,2""! and we may set
V1, 0 S T < 1/2”
Fey = ] jj2t <z < (jH1)/2Y, j=1,...,20—2
min{v;_q,v;} x=j/2", j=1,...,2"—1
Vgn_q 2" -1)/2" <z <1.

This is clearly a sequence of lower semicontinuous step functions. Since

- _ 9 2411 [2j+1 2j+2
v; = min f(:(,’)l’e ﬁ,w W;W

‘ 2j 2j+1 : 2j+1 2j+2
gmln{f(x) S [2n+1,w}},mm{f(x):x€ l on+l 7 gn+l '

we easily see that fi < fo < f3 < --- < f. Furthermore, for any e > 0, there

exists 0 such that |[x — x| < 9, x € [0,1] = f(x) > f(xg) —e. Thus, for n
large enough, f,, (o) > min{f(x) : |z — x| < 6,2 € [0,1]} > f(x¢) —e. That is
fu(2o) = [f(x0)-

Thus, we have shown that any lower semicontinuous f : [0, 1] — R is the limit of
step functions as required.

On the other hand, if a sequence of lower semicontinuous functions fi:[0,1] =R
satisfy f1 < fo < f3 <--- < f:]0,1] = R with f; — f pointwise, then

liminf f(z) > liminf f;(z) > f;(z0),

T—To T—To

for every j. Thus, taking the limit as j — oo,

liminf f(z) > f(z0),

T—T0

i.e., f is lower semicontinuous. This also applies to one direction in part (d) since
we didn’t use the fact that the f; were step functions.



(d)

Let f, be the step functions from part (c). Let f, be linear on [l ﬂ} with

f(G/2") = fu(G/27), 5 =0,1,...,2™ 2n) 2n

h (D)1 (2) D] (8) o]

These functions are clearly continuous.

Also, fni1 (g{i}) > fn @fjﬁ) _(The value z = g{i} gives the new “middle”
endpoints.) Since the values of f,; are also at least as great as f,, on the other
endpoints, it follows that f; < fo < f3 < --- < f. As before, for any € > 0, there
exists 0 > 0 such that |z — | < 0, x € [0,1] implies f(z) > f(z¢) — €. Thus, for
n large enough,

fu(zo) > mm{fn(x) Cle—xo| <9, x €0, 1]}
>min {f(z): |z — x| <9, z€[0,1]}

> f(xg) — e

That is fn(z0) — f(20).
Note: A beautiful proof (without using step functions) was given by Sachin Jain:

fo(x) =inf{f(t) +nlt — x| : t € [0,1]}.

(I leave the details of checking that this works to you!)

This is already done in part (c); let us simply note that the assumption the
function is bounded is superfluous. This is not always the case if we assume
f:]0,1] = RU{+£oo}, where we would need to assume f is bounded below.

Clearly, g(z) < f(z), i.e., g is dominated by f.
We need to show

g(z) <liminf g(§) = liminf {sup inf f(n)} .

§—a -z p>0 In—¢€I<p
Assume, by way of contradiction, that 3¢ > 0 and Jx; — x with

sup inf f(n) < g(z) —e
p>0 In—&;l<p

Consequently, Jp; N\, 0 and 3n; such that |n; — &;| < p; with

f(n;) < g(x) —e€/2.

Since |n; — x| < |n; — &;| + |§; — x|, we see that n; — x. Hence,
g(x) < liminf f(n;) < g(z) —€/2,
j—oo

which is a contradiction.



Alternatively, one can argue directly that

lim inf {sup inf f(n)} > lirgn inf f(&) > g(z).

- p>0 [n—€l<p
Either way, we see that g is lower semicontinuous.
Now, if f < f is lower semicontinuous, then

f(xo) < liminf f(z)

T—T0

< liminf f(x)

T—T0

<sup inf  f(xo)
e>0 0<|z—z0|<e

We also know f(z0) < f(20). Therefore,

f(zo) <sup inf  f(x0) = g(wo).

e>0 |z—z0|<e

Notice that we have shown

liminf f(z) =lim inf  f(z) =sup inf  f(x).

T—T0 e—00<|z—zo|<e e O<|z—zol<e

{z : {fu(z)} converges} = {z : {f.(z)} is Cauchy}
={x:Ve>03I Nst.n,m>N=|fu(x) — fu(z)| <€}

=NU N {=: 1fal@) = fula)] < 1/}

k=1 N=1nm>N

Moo 12 2 [fu(@) = f(x)] < 1/k} is closed.
5. (a) This is Theorem 2.10(a) in Folland. Thus, we obtain

k
f= Z%’XE]» <
j=1

(b) This is not possible. Take f = X[o,\@- Then any nonnegative step function
g < f must be g = 0 (which differs from f on a set of full measure). What
we can do, is assume the E; are disjoint, the a; are nonzero and distinct, and
Ey = {z : f(r) = 0}. Then we can find (disjoint) closed sets F; C E; s.t.
mF; > mE; —€/[2(k + 1)] and open sets U; O E; s.t. mU; < mE; +¢/[2(k + 1)].
With the closed sets, we note that for each x € (0,1)\ U Fj, there is a unique
largest interval (a(x),b(z)) with « € (a,b) C (0,1)\ U F;. Thus we may set

fo(z) = {[

f(z), xr € UF;
f(0) = f(a)l(@—a)/(b—a) + f(a), =€ (0,1)\UF
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to obtain a continuous function on (0,1) U (UF;) which satisfies m{z : fo(z) #
f@)} < m([0,1\(UE})) = Yo (mE; —mF}) < ¢/2.

Without loss of generality U; N F; = 0 for i # j. (Replace U; with U;\ (U#i Fj)
if necessary.)

With the open sets, we can do the following. For each j, U; = [4) I, is a countable
disjoint union of open intervals. (Let {¢/} = U;NQ; take I;; to be the largest open
interval in U; which contains ¢;. Obviously the endpoints of I;; are not in Uj;, or
else we could make I;; bigger. Thus, U;\I;; is open. Let j, = min{j : ¢; € U;\I;1},
and take [;, to be the largest open interval in U; which contains g;;. Continue
this process.) Since the closed sets F; C U; are compact, we can take finitely
many of the [, such that first Ul;, D Fj and > ml; > mU; —€/(2k).

Thus, we have finitely many intervals {I;;}. Now let I; = I;; and I, = Ij5\ Iy,
I3 = I3\ (Il U Ig) etc. In this way we obtain finitely many disjoint intervals I;
and finitely many endpoints {x,} such that

IlL-ij"'L'ij[jl U{l’g} DO F
L1 L"j o 'L-ij]jz U{Iz} 2 Fy

L1 L"j " L"j I, U{Iz} 2 L.

Thus we can form a step function

J2

Ji Jk
g= Z%XIJ + Z agXr; + -+ Z kX1,
j=1

J=n+1 J=jk—1+1

If & € YF\{e}, then g(a) = aj, = f(x). Thus, {r : gla) # J()} C
([0, 1\ F) Ufae}. Hence,

k
m{z: g(z) # f(2)} <D m(B\F))
j=1
k
A
e 2k
- 0
2
(¢) In this part, we can get f < g, by setting
f = Z ijIj
where
mji(r —o5), o Sz <aj+e
fj: ijj, aj+€§x§ﬁj—e

—m;(z —B;), Bj—e<ax<pf,
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a1/€1 fOI'lS]S]l

a2/€2 fOrjl—FlS]Sjg
mj = bj/ej = .

ag/er for Jr_1+1<j < ji.
Thus,

Since the I; are disjoint, f\jj <mje; =bj = §|Ij and f|(wj)c =0= g|(tﬂ1j)0'

f < g. Furthermore,

{z: f(z) #g(x)} C (H‘J(%’a%‘ + 63’)) U (H‘J(ﬁj - ej,ﬁj)> :

j=1 j=1

So
e 7o) #3601} < e+ 2o
<22

6

47y

(d) (There was a typo in this problem. The f should be f. See corrected exam.

Actually, the problem could be modified in another way: Show that there is a
nonnegative continuous function f (not necessarily the one above) such that

miz: f(z) # f(x)} <e

This is true and is called Lusin’s Theorem. But it is a bit harder; you can use
Egeroft’s Theorem.)

The intended problem is easy:

m{z: f(z) # f(2)} <mfa: fx) # g@)} + {2 : g(2) # f(2)}
<€/2+€/2=c¢.

. Follow the hint, let C; be a maximal collection of disjoint balls in C with radii in
[R/2, R). That is

R/(2 )§ \% } = B:(7) N B,(z) #0 for some B,(x) € C;.

The collection C; is clearly countable (since each ball contains a distinct point in
R™ with rational coordinates), and (o, Bs,(7) 2 s, Br(7) where C; = {B3(%) €
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C:R/2<

> 7 < R}. To see the last assertion, assume B;(Z) € C;. Then 3 2* €
Bf(j) N Br l’)

for some B, (z) € C;. Then for each & € Bx(%),
€ —z| <|E—F|+|T—a"|+|z" —2| <2F+r <2R+r < 5r.

Thus, Bi(Z) € Ug, Bsr(z). In fact, the same reasoning shows that any ball
B;(7) € C with 7 < R which intersects (Jo, B,(7) is a subset of | J,, Bs.(r). Let
Cy be a maximal collection of disjoint balls in { B,(z) € C : B,(z)NU,, B,(x) = 0}
with radii in [R/4, R/2). The reasoning above applies also in this case and shows
that any ball in C with radius smaller than R/2 which intersects one of the balls
in C; U Cy is contained in the union of the expanded balls from C; U Cy (with
radius five times their usual radius). Furthermore, every ball in C with radius in
[R/4, R/2) must intersect one of the balls in C; U Cy. I trust you can see the rest
of the argument from here.



