
Math 6327 Real Analysis Exam 1 (Solutions—odds)

1. The statement of this problem requires some correction. (See corrected exam.) In
particular, part (c) is not possible if the lower semicontinuous function f is not bounded
below, and this is quite possible if the domain of f is (0, 1) as indicated in the problem,
e.g., f(x) = −1/x. In addition, part (e) implicitly, and part (f) explicitly, consider the
domain of definition to be [0, 1].

We therefore invoke the universal instruction: Solve the given problems — unless the

problem is incorrectly stated. If the problem is incorrectly stated, figure out the correct

statement, and solve that problem.

Let us make a new definition: Given any subset E ⊂ R, f is lower semicontinuous at

x0 ∈ E if
f(x0) ≤ lim inf

E3x→x0

f(x).

(The definition of lim inf is:

lim inf
E3x→x0

f(x) = lim
δ→0

inf{f(x) : x ∈ E, 0 < |x − x0| < δ}.)

(a) Recall that f is continuous at a point x0 if f is defined in a neighborhood of x0

and
lim

x→x0

f(x) = f(x0). (1)

(In the case x0 is an endpoint of an interval on which f is defined, say [x0, x0 + δ),
we assume f(x) ≡ f(x0) for x < x0.) Assuming the domain of definition is (0, 1) as
given in the problem, there is no question about being defined in a neighborhood
of each point, and f is continuous at x0

⇔ lim inf
x→x0

f(x) = f(x0) = lim sup
x→x0

f(x) (2)

⇔ lim inf
x→x0

f(x) ≥ f(x0) and f(x0) ≥ lim sup
x→x0

f(x)

⇔f is lower and upper semicontinuous.

(b) By Proposition 2.3 it is enough to show that {x ∈ (0, 1) : f(x) > a} is a Borel
set whenever a ∈ R. In fact, this set is open: Assume f(x0) > a. We claim
that f(x) > a for x in some ball Br(x0). Otherwise, there exists a sequence
xj → x0 s.t. f(xj) ≤ a. Thus, by semicontinuity f(x0) ≤ lim inf f(xj) ≤ a,
which contradicts the fact that f(x0) > a. Thus, for some r > 0, we have
Br(x0) ⊆ {x ∈ (0, 1) : f(x) > a}, and the set is open.

(c) Here we (must) assume f : [0, 1] → R. For each j = 0, 1, 2, . . . , 2n − 1. Consider

vj = inf
x∈[ j

2n ,
j+1
2n ]

f(x).
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We claim vj > −∞. Otherwise, there exists a sequence ξj ∈ [0, 1] with f(ξj) ↘
−∞. By taking a subsequence, we may assume ξj → x0 ∈ [0, 1]. By lower
semicontinuity,

f(x0) ≤ lim inf
x→x0

f(x) ≤ lim
j→∞

f(ξj) = −∞.

This contradicts the fact that f is real valued.

Observation: We have just shown that every lower semicontinuous function
f : [0, 1] → R is bounded below. (See part (e).) Furthermore, replacing −∞ with
m = inf{f(x) : x ∈ [0, 1]} in the reasoning above we find,

m ≤ f(x0) ≤ lim f(ξj) = m.

Thus, f attains its minimum value on [0, 1]. (This is the solution to part (e).)

Returning to part (c), we know vj ∈ R, j = 1, . . . , 2n−1, and we may set

f̄n(x) =



















v1, 0 ≤ x < 1/2n

vj, j/2n < x < (j + 1)/2n, j = 1, . . . , 2n − 2

min{vj−1, vj} x = j/2n, j = 1, . . . , 2n − 1

v2n−1 (2n − 1)/2n < x ≤ 1.

This is clearly a sequence of lower semicontinuous step functions. Since

vj = min

{

f(x) : x ∈

[

2j

2n+1
,
2j + 1

2n+1

]

∪

[

2j + 1

2n+1
,
2j + 2

2n+1

]}

≤ min

{

f(x) : x ∈

[

2j

2n+1
,
2j + 1

2n+1

]}

, min

{

f(x) : x ∈

[

2j + 1

2n+1
,
2j + 2

2n+1

]}

,

we easily see that f̄1 ≤ f̄2 ≤ f̄3 ≤ · · · ≤ f . Furthermore, for any ε > 0, there
exists δ such that |x − x0| ≤ δ, x ∈ [0, 1] ⇒ f(x) ≥ f(x0) − ε. Thus, for n
large enough, f̄n(x0) ≥ min{f(x) : |x − x0| ≤ δ, x ∈ [0, 1]} ≥ f(x0) − ε. That is
f̄n(x0) → f(x0).

Thus, we have shown that any lower semicontinuous f : [0, 1] → R is the limit of
step functions as required.

On the other hand, if a sequence of lower semicontinuous functions f̄j : [0, 1] → R

satisfy f̄1 ≤ f̄2 ≤ f̄3 ≤ · · · ≤ f : [0, 1] → R with f̄j → f pointwise, then

lim inf
x→x0

f(x) ≥ lim inf
x→x0

f̄j(x) ≥ f̄j(x0),

for every j. Thus, taking the limit as j → ∞,

lim inf
x→x0

f(x) ≥ f(x0),

i.e., f is lower semicontinuous. This also applies to one direction in part (d) since
we didn’t use the fact that the fj were step functions.
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(d) Let f̄n be the step functions from part (c). Let fn be linear on
[

j

2n , j+1
2n

]

with
fn(j/2n) = f̄n(j/2n), j = 0, 1, . . . , 2n:

fn(x) = f̄n

(

j

2n

)

+2n

[

f̄n

(

j + 1

2n

)

− f̄n

(

j

2n

)](

x −
j

2n

)

for x ∈

[

j

2n
,
j + 1

2n

]

.

These functions are clearly continuous.

Also, f̄n+1

(

2j+1
2n+1

)

≥ fn

(

2j+1
2n+1

)

. (The value x = 2j+1
2n+1 gives the new “middle”

endpoints.) Since the values of f̄n+1 are also at least as great as fn on the other
endpoints, it follows that f1 ≤ f2 ≤ f3 ≤ · · · ≤ f . As before, for any ε > 0, there
exists δ > 0 such that |x − x0| ≤ δ, x ∈ [0, 1] implies f(x) ≥ f(x0) − ε. Thus, for
n large enough,

fn(x0) ≥ min
{

f̄n(x) : |x − x0| ≤ δ, x ∈ [0, 1]
}

≥ min {f(x) : |x − x0| ≤ δ, x ∈ [0, 1]}

≥ f(x0) − ε.

That is fn(x0) → f(x0).

Note: A beautiful proof (without using step functions) was given by Sachin Jain:

fn(x) = inf{f(t) + n|t − x| : t ∈ [0, 1]}.

(I leave the details of checking that this works to you!)

(e) This is already done in part (c); let us simply note that the assumption the
function is bounded is superfluous. This is not always the case if we assume
f : [0, 1] → R ∪ {±∞}, where we would need to assume f is bounded below.

(f) Clearly, g(x) ≤ f(x), i.e., g is dominated by f .

We need to show

g(x) ≤ lim inf
ξ→x

g(ξ) = lim inf
ξ→x

{

sup
ρ>0

inf
|η−ξ|<ρ

f(η)

}

.

Assume, by way of contradiction, that ∃ε > 0 and ∃xj → x with

sup
ρ>0

inf
|η−ξj |<ρ

f(η) ≤ g(x) − ε.

Consequently, ∃ρj ↘ 0 and ∃ηj such that |ηj − ξj| < ρj with

f(ηj) ≤ g(x) − ε/2.

Since |ηj − x| ≤ |ηj − ξj| + |ξj − x|, we see that ηj → x. Hence,

g(x) ≤ lim inf
j→∞

f(ηj) ≤ g(x) − ε/2,

which is a contradiction.
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Alternatively, one can argue directly that

lim inf
ξ→x

{

sup
ρ>0

inf
|η−ξ|<ρ

f(η)

}

≥ lim inf
ξ→x

f(ξ) ≥ g(x).

Either way, we see that g is lower semicontinuous.

Now, if f̃ ≤ f is lower semicontinuous, then

f̃(x0) ≤ lim inf
x→x0

f̃(x)

≤ lim inf
x→x0

f(x)

≤ sup
ε>0

inf
0<|x−x0|<ε

f(x0)

We also know f̃(x0) ≤ f(x0). Therefore,

f̃(x0) ≤ sup
ε>0

inf
|x−x0|<ε

f(x0) = g(x0).

Notice that we have shown

lim inf
x→x0

f(x) = lim
ε→0

inf
0<|x−x0|<ε

f(x) = sup
ε

inf
0<|x−x0|<ε

f(x).

3.

{x : {fn(x)} converges} = {x : {fn(x)} is Cauchy}

= {x : ∀ ε > 0 ∃ N s.t. n, m > N ⇒ |fn(x) − fm(x)| < ε}

=
∞
⋂

k=1

∞
⋃

N=1

⋂

n,m>N

{x : |fn(x) − fm(x)| ≤ 1/k}.

⋂

n,m>N{x : |fn(x) − fm(x)| ≤ 1/k} is closed.

5. (a) This is Theorem 2.10(a) in Folland. Thus, we obtain

f̄ =
k
∑

j=1

ajχEj
≤ f.

(b) This is not possible. Take f̄ = χ[0,1]\Q. Then any nonnegative step function
ḡ ≤ f̄ must be ḡ ≡ 0 (which differs from f̄ on a set of full measure). What
we can do, is assume the Ej are disjoint, the aj are nonzero and distinct, and
E0 = {x : f̄(x) = 0}. Then we can find (disjoint) closed sets Fj ⊆ Ej s.t.
mFj ≥ mEj − ε/[2(k + 1)] and open sets Uj ⊇ Ej s.t. mUj ≤ mEj + ε/[2(k + 1)].
With the closed sets, we note that for each x ∈ (0, 1)\ ∪ Fj, there is a unique
largest interval (a(x), b(x)) with x ∈ (a, b) ⊆ (0, 1)\ ∪ Fj. Thus we may set

f̃0(x) =

{

f̄(x), x ∈ ∪Fj

[f̄(b) − f̄(a)](x − a)/(b − a) + f̄(a), x ∈ (0, 1)\ ∪ Fj
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to obtain a continuous function on (0, 1) ∪ (∪Fj) which satisfies m{x : f̃0(x) 6=
f̄(x)} ≤ m([0, 1]\(∪Fj)) =

∑

(mEj − mFj) ≤ ε/2.

Without loss of generality Ui ∩ Fj = ∅ for i 6= j. (Replace Ui with Ui\
(

⋃

j 6=i Fj

)

if necessary.)

With the open sets, we can do the following. For each j, Uj =
⊎

Ij` is a countable
disjoint union of open intervals. (Let {q`} = Uj∩Q; take Ij1 to be the largest open
interval in Uj which contains q1. Obviously the endpoints of Ij1 are not in Uj, or
else we could make Ij1 bigger. Thus, Uj\Īj1 is open. Let j2 = min{j : qj ∈ Uj\Īj1},
and take Ij2 to be the largest open interval in Uj which contains qj2. Continue
this process.) Since the closed sets Fj ⊂ Uj are compact, we can take finitely
many of the Ij` such that first ∪Ij` ⊃ Fj and

∑

mIj` > mUj − ε/(2k).

Thus, we have finitely many intervals {Iij}. Now let I1 = I11 and I2 = I12\I21,
I3 = I13\

(

I1 ∪ I2

)

etc. In this way we obtain finitely many disjoint intervals Ij

and finitely many endpoints {x`} such that

I1

⊎

· · ·
⊎

Ij1

⋃

{x`} ⊇ F1

Ij1+1

⊎

· · ·
⊎

Ij2

⋃

{x`} ⊇ F2

...

Ijk−1+1

⊎

· · ·
⊎

Ijk

⋃

{x`} ⊇ Fk.

Thus we can form a step function

ḡ =

j1
∑

j=1

a1χIj
+

j2
∑

j=j1+1

a2χIj
+ · · · +

jk
∑

j=jk−1+1

akχIk

If x ∈
⊎

Fj\{x`}, then ḡ(x) = aj0 = f̄(x). Thus, {x : ḡ(x) 6= f̄(x)} ⊆
([0, 1]\

⊎

Fj)
⋃

{x`}. Hence,

m{x : ḡ(x) 6= f̄(x)} ≤
k
∑

j=1

m(Ej\Fj)

<

k
∑

j=1

ε

2k

=
ε

2
. �

(c) In this part, we can get f̃ ≤ ḡ, by setting

f̃ =
∑

f̃jχIj

where

f̃j =











mj(x − αj), αj ≤ x ≤ αj + εj

mjεj, αj + ε ≤ x ≤ βj − ε

−mj(x − βj), βj − ε ≤ x ≤ βj,
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Ij = (αj, βj),

εj = min

{

ε

4jk

,
βj − αj

2

}

, and

mj = bj/εj =























a1/ε1 for 1 ≤ j ≤ j1

a2/ε2 for j1 + 1 ≤ j ≤ j2

...

ak/εk for jk−1 + 1 ≤ j ≤ jk.

Since the Ij are disjoint, f̃ |
Ij
≤ mjεj = bj = ḡ|

Ij
and f̃ |

(
U

Ij )c
≡ 0 = ḡ|

(
U

Ij )c
. Thus,

f̃ ≤ ḡ. Furthermore,

{x : f̄(x) 6= ḡ(x)} ⊆

(

jk
⊎

j=1

(αj, αj + εj)

)

⋃

(

jk
⊎

j=1

(βj − εj, βj)

)

.

So

m{x : f̃(x) 6= ḡ(x)} ≤

jk
∑

j=1

εi +

ik
∑

j=1

εj

< 2

jk
∑

j=1

ε

4jk

=
ε

2
.

(d) (There was a typo in this problem. The f should be f̄ . See corrected exam.
Actually, the problem could be modified in another way: Show that there is a
nonnegative continuous function f̃ (not necessarily the one above) such that

m{x : f̃(x) 6= f(x)} < ε.

This is true and is called Lusin’s Theorem. But it is a bit harder; you can use
Egeroff’s Theorem.)

The intended problem is easy:

m{x : f̃(x) 6= f̄(x)} ≤ m{x : f̃(x) 6= ḡ(x)} + {x : ḡ(x) 6= f̄(x)}

< ε/2 + ε/2 = ε.

7. Follow the hint, let C1 be a maximal collection of disjoint balls in C with radii in
[R/2, R). That is

B̄r̃(x̃) ∈ C\C1

R/2 ≤ r̃ < R

}

=⇒ B̄r̃(x̃) ∩ B̄r(x) 6= ∅ for some B̄r(x) ∈ C1.

The collection C1 is clearly countable (since each ball contains a distinct point in
Rn with rational coordinates), and

⋃

C1
B̄5r(x) ⊇

⋃

C̃1
B̄r(x) where C̃1 = {B̄r̃(x̃) ∈
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C : R/2 ≤ r̃ < R}. To see the last assertion, assume B̄r̃(x̃) ∈ C̃1. Then ∃ x∗ ∈
B̄r̃(x̃) ∩ B̄r(x) for some B̄r(x) ∈ C1. Then for each ξ ∈ B̄r̃(x̃),

|ξ − x| ≤ |ξ − x̃| + |x̃ − x∗| + |x∗ − x| ≤ 2r̃ + r ≤ 2R + r ≤ 5r.

Thus, B̄r̃(x̃) ⊆
⋃

C1
B̄5r(x). In fact, the same reasoning shows that any ball

B̄r̃(x̃) ∈ C with r̃ ≤ R which intersects
⋃

C1
B̄r(x) is a subset of

⋃

C1
B̄5r(x). Let

C2 be a maximal collection of disjoint balls in {B̄r(x) ∈ C : B̄r(x)∩
⋃

C1
Br(x) = ∅}

with radii in [R/4, R/2). The reasoning above applies also in this case and shows
that any ball in C with radius smaller than R/2 which intersects one of the balls
in C1 ∪ C2 is contained in the union of the expanded balls from C1 ∪ C2 (with
radius five times their usual radius). Furthermore, every ball in C with radius in
[R/4, R/2) must intersect one of the balls in C1 ∪ C2. I trust you can see the rest
of the argument from here.
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