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In complex analysis, integration means integration along curves. In our presen-
tation (and that of Stein and Shakarchi) the basis of complex integration does not
really use anything beyond basic Riemann integration of real functions from elemen-
tary calculus. I felt, however, that there might be some value in a brief review of real
integration and the addition of some details glossed over by Stein and Shakarchi.

1 Real Integration

Given a real valued function f : Γ → R defined on a curve Γ ⊂ R2, we may attempt
(and succeed in many instances) to define integration of f on Γ by

∫

Γ

f = lim
‖P‖→0

k
∑

j=1

f(p∗j)H
1(Γj). (1)

In this expression P = {Γj}
k
j=1 is a partition of the curve Γ so that

Γ =

k
⋃

j=1

Γj and H1(Γi ∩ Γj) = 0 when i 6= j;

‖P‖ = max{diamΓj : j = 1, 2, . . . , k}, the point p∗j ∈ Γj is an evaluation point, and
H1 is length measure in R2, i.e., one-dimensional Hausdorff measure. The expression
on the right of (1) is called a Riemann sum (of course).

It is generally a good idea to keep this kind of definition of integration (in terms
of Riemann sums) in the back of one’s mind, and it will be the background for all
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(or at least most) integration we consider. Moreover, when we integrate on curves in
complex analysis, we will borrow some of the notation from (1), though the complex
integration on curves we consider will be fundamentally different in several ways.

Recall that typical assumptions concerning the curve Γ and the function f : Γ → R

are that Γ admits a parameterization α : [a, b] → Γ with α ∈ C1([a, b] → R2) and
f ∈ C0(Γ). It is also common to consider Γ to be piecewise C1, that is to say
a concatenation of curves admitting C1 parameterizations or, more precisely, that
there are partitions Q = {Γj}

k
j=1 of Γ and

a = t0 < t1 < · < tk = b

of [a, b] for which there exist parameterizations αj : [tj−1, tj] → Γj with αj ∈
C1([tj−1, tj ] → R

2) for j = 1, 2, . . . , k. In these cases we can express the integral
in (1) using the change of variables formula

∫

Γ

f =

∫ b

a

f ◦ α(t) |α′(t)| dt =
k

∑

j=1

∫ tj

tj−1

f ◦ αj(t) |α
′
j(t)| dt

or simply
∫

Γ

f =

∫

(a,b)

f ◦ α |α′|. (2)

The parameterization α may be considered to orient the curve Γ, but the resulting
orientation has nothing to do with the value of the integral in (1); this is also reflected
in the appearance of the Euclidean norm in the change of variables formula for the
integral.

The notation in (2) may be interpreted to emphasize the consideration of the
interval (a, b) ⊂ R as a geometric object without orientation. Of course there is
always a natural orientation in R according to which we write, for example,

∫ b

a

g(ξ) dξ = −

∫ a

b

g(ξ) dξ. (3)

For a < b, integrals like the one on the right in (3) are not naturally expressed in the
notation appearing in (2).

If α : [a, b] → Γ parameterizes a curve Γ, we can almost always “trade in” α for
an arclength parameterization γ : [0, L] → Γ where

L =

∫ b

a

|α′(t)| dt = H1(Γ) is the length of Γ. (4)
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More precisely γ = γ(s) = α(t) with

s =

∫ t

a

|α′(τ)| dτ.

Like the correspondence z = x + iy, f = u + iv, we will use the notation associated
with “trading in” α : [a, b] → Γ for an arclength parameterization γ : [0, L] → Γ in a
more or less standardized fashion.

Hopefully the above summarizes some aspects of real integration that will be
helpful to keep in mind as they are applied to the treatment of complex integration.

2 Real Integrals of Complex Valued Functions

At the risk of creating confusion, I am going to introduce a kind of “hybrid integral”
that is a small generalization of the real integrals from calculus. When we talk about
complex integration, these are not the integrals we have in mind. Nevertheless,
we will use these hybrid integrals.

Given g : [a, b] → C with g = h+ ik ∈ C0([a, b] → C) we set

∫ b

a

g(t) dt =

∫ b

a

h(t) dt+ i

∫ b

a

k(t) dt.

These integrals inherit many (obvious) properties from one-dimensional real integrals.
I will not try to list these properties now, but I will try to note them when they are
used/needed.

3 Complex Integration

For this section, let α (or as Stein writes z) parameterize a curve in C. That is,
α : [a, b] → Γ ⊂ C.

Generally we will assume α : [a, b] → Γ is a regular C1 curve. This means

(i) x, y ∈ C1[a, b] where x = Reα and y = Imα, and

(ii) α′ = x′ + iy′ 6= 0.

Condition (ii) is what it means for the curve to be regular. Note that the derivative
α′ is not a complex derivative but rather a “real derivative of a complex valued
function.”
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Exercise 1 If α is a regular parameterization of a C1 curve, then for each t ∈ (a, b),
there is a complex number L ∈ C for which

lim
h→0

α(t+ h)− α(t)

h
= L.

Note that h ∈ R in this limit. Moreover, L = x′(t) + iy′(t).

Piecewise regular C1 curves are also important/useful. In this case we have a par-
tition a = t0 < t1 < · · · < tk = b of the interval [a, b] with α : [a, b] → Γ and each
restriction

αj = α∣
∣

[tj−1,tj ]

→ Γ for j = 1, 2 . . . , k

is a regular C1 parameterization.
A one-dimensional change of variables is a continuously differentiable bijec-

tion ξ : [a, b] → [c, d]. Notice ξ is either increasing or decreasing.

Exercise 2 Given a regular C1 curve parameterized by

α : [a, b] → Γ and α̃ : [c, d] → Γ,

let us say α ∼ α̃ if there exists a one-dimensional change of variables ξ : [a, b] → [c, d]
for which α = α̃ ◦ ξ. Show that “ ∼ ” is an equivalence relation.

Complex integrals always depend on orientation: Given a piecewise regular C1

curve Γ ⊂ C with orientation determined by an arclength parameterization γ :
[0, L] → Γ and a function f ∈ C0(Γ), we define the (complex) integral of f over Γ
by

∫

γ

f =

∫ L

0

f ◦ γ(s) γ′(s) ds. (5)

Note that even though γ′(s) is a unit vector the integrand

f ◦ γ(s) γ′(s)

is a complex number depending on the orientation of Γ. In particular, the integral in
definition (5) is a “hybrid” real integral of a complex valued function. Recall also the
equivalence of the absolute value in C with the Euclidean norm of the corresponding
point in R

2 according to which

|α′| = |(x′, y′)| and L =

∫

(a,b)

|α′|

is the length of a curve Γ ⊂ C.
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Lemma 1 If α = γ ◦ ξ for a one-dimensional change of variables ξ with ξ′ > 0, then

∫ L

0

f ◦ γ(s) γ′(s) ds =

∫ b

a

f ◦ α(t) α′(t) dt.

That is, the hybrid integral

I[α] =

∫ b

a

f ◦ α(t)α′(t) dt

is constant on the equivalence class of parameterizations differing by an orientation
preserving change of variables.

Proof:

∫ b

a

f ◦ α(t) α′(t) dt =

∫ b

a

f ◦ γ ◦ ξ(t) (γ ◦ ξ)′(t) dt

=

∫ b

a

f ◦ γ ◦ ξ(t) γ′ ◦ ξ(t) ξ′(t) dt

=

∫ L

0

f ◦ γ(s) γ′(s) ds. �

In this proof we have used two minor generalizations of familiar assertions.

Exercise 3 Verify the following concerning change of variables: If

(i) α : [a, b] → Γ parameterizes a curve Γ ⊂ C,

(ii) β : [c, d] → Γ parameterizes the same curve,

(iii) ξ : [a, b] → [c, d] is a change of variables, and

(iv) g : Γ → C is continuous,

then

(a) The usual chain rule holds for the composition of a complex valued function of a
real variable and a real valued function of a real variable:

(β ◦ ξ)′ = (β ′ ◦ ξ) ξ′.
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(b) The usual change of varibles formula holds for the (hybrid) integral of a complex
valued function on a complex curve subject to a real change of variable:

∫ b

a

g(β ◦ ξ(t)) ξ′(t) dt =

∫ d

c

g ◦ β(ξ) dξ.

In view of Lemma 1 we also write

∫

α

f =

∫ b

a

f ◦ α(t) α′(t) dt

for any α : [a, b] → Γ. (The integral depends on the orientation determined by α but
not on the parameterization α in any other way.)

Proposition 1 (Proposition 3.1 in S&S) The following hold for complex inte-
grals:

(i) (linearity)
∫

α

(af + bg) = a

∫

α

f + b

∫

α

g.

(ii) (reverse orientation)
∫

−α

f = −

∫

α

f.

Note: The parameterization −α here can be taken as −α : [0, 1] → γ by −α(t) =
α((1− t)b+ ta). A reverse parameterization, i.e., a reverse of orientation in a
complex integral is denoted by α− by Stein.

(iii) (basic inequality for integral estimates) If |f(z)| ≤ M for z ∈ Γ, then

∣

∣

∣

∣

∫

α

f

∣

∣

∣

∣

≤ M length(Γ).

Here is a (rather more detailed version of the) proof of the basic inequality (iii) given
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by Stein:

∣

∣

∣

∣

∫

α

f

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

f ◦ α(t) α′(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

lim
‖P‖→0

k
∑

j=1

f ◦ α(t∗j) α
′(t∗j)H

2(Γj)

∣

∣

∣

∣

∣

= lim
‖P‖→0

∣

∣

∣

∣

∣

k
∑

j=1

f ◦ α(t∗j) α
′(t∗j)H

2(Γj)

∣

∣

∣

∣

∣

≤ lim
‖P‖→0

k
∑

j=1

∣

∣f ◦ α(t∗j) α
′(t∗j )

∣

∣ H2(Γj)

= lim
‖P‖→0

k
∑

j=1

∣

∣f ◦ α(t∗j)
∣

∣

∣

∣α′(t∗j)
∣

∣ H2(Γj)

≤ N lim
‖P‖→0

k
∑

j=1

∣

∣α′(t∗j )
∣

∣ H2(Γj)

= M

∫ b

a

|α′(t)| dt

= M length(Γ). �

Theorem 1 (Theorem 3.2 in S&S, integration of a complex derivative) If f :
Ω → C is differentiable and Γ ⊂ Ω with orientation α, then

∫

α

f ′ = f ◦ α(b)− f ◦ α(a).

Proof: Let us first note that the fundamental theorem of calculus holds for hybrid
integrals (i.e., real integrals of complex valued functions) in the form

∫ b

a

g′(t) dt = g(b)− g(a).

We will need to use this. By definition

∫

α

f ′ =

∫ b

a

f ′ ◦ α(t) α′(t) dt.
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As we look at the integrand on the right, we see the product of a complex derivative
and a real derivative. Naturally, we expect there should be a chain rule

(f ◦ α)′ = (f ′ ◦ α) α′

in this case, and there is, but technically we haven’t proved it yet. See the exercise
after we finish this proof. Assuming this chain rule, we can apply the fundamental
theorem of calculus mentioned at the beginning of this proof:

∫

α

f ′ =

∫ b

a

f ′ ◦ α(t) α′(t) dt

=

∫ b

a

(f ◦ α)′(t) dt

= f ◦ α∣
∣

b

a

= f ◦ α(b)− f ◦ α(a). �

For a piecewise C1 curve Γ, (you can) apply this result on the partitition pieces and
get a telescoping sum.

Exercise 4 Here are precise statements of simple results used in the foregoing proof.

(a) If g : [a, b] → C has continuous (real) derivative g′ = h′ + ik′, then

∫ b

a

g′(t) dt = g(b)− g(a).

This is a version of the fundamental theorem of calculus for complex valued
functions g ∈ C1([a, b] → C).

(b) (another chain rule) If f : Ω → C is differentiable and α : [a, b] → Ω has
continuous (real) derivative α′ = x′ + iy′, then

d

dt
(f ◦ α) = (f ′ ◦ α)

d

dt
α.

Corollary 2 (Corollary 3.3 in S&S) If Γ is a closed curve with Γ ⊂ Ω and
f : Ω → C is differentiable, then

∫

α

f ′ = 0. (6)
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Proof: Closed means α(b) = α(a). �

This says the derivative of a complex differentiable function is closely related to
a conservative vector field in calculus.

Corollary 3 There does not exist a differentiable function f : C\{0} → C with
f ′(z) = 1/z.

Proof: Assume by way of contradiction that such a function f , a primitive of 1/z,
does exist. Then we can consider the unit circle parameterized by γ(t) = eit. Since
γ′(t) = ieit, we have

∫

γ

f ′ =

∫

γ

1

z
=

∫ 2π

0

1

eit
i eit dt = 2πi 6= 0. �

Stein says that (6) is a manifestation of Cauchy’s theorem which says, in certain
cases, for a differentiable function f : Ω → C one has

∫

α

f = 0.

I suppose this is an okay suggestion, as far as it goes. You can see, however, that the
function g(z) = 1/z on the punctured plane gives some kind of “counterexample.”
The point, it turns out, is that there is a singularity, a pole, that the curve we chose
goes around.

Exercise 5 Let Γ be the boundary of the square U = {z = x + iy : 1 < x, y < 2}.
Compute

∫

γ

1

z
.

Theorem 2 (Corollary 3.4 of S&S) If f : Ω → C is differentiable and Ω is connected
with f ′ ≡ 0, then f is constant.

Proof: Recall that connected open subsets of C are also path connected. We claim
that given two points z0 and z in a connected open domain Ω, there exists a smooth
regular path Γ ⊂ Ω connecting z0 to z. If this is correct, then

f(z)− f(z0) = f ◦ α(b)− f ◦ α(a)

=

∫

α

f ′

= 0.

So f(z) ≡ f(z0). �
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