S\&S Exercise 1.1(e)

John McCuan

January 13, 2022

Here we are asked to describe geometrically the set

$$
S=\{z \in \mathbb{C}: \operatorname{Re}(a z+b)>0\}
$$

where a and b are two fixed complex numbers. We have seen in the previous part the open right half plane

$$
H_{c}=\{z \in \mathbb{C}: \operatorname{Re} z>c\}
$$

where $c \in \mathbb{R}$ as indicated on the left in Figure 1, and our guess is the set S too is some open half plane. In fact, we note that $S=\left\{z \in \mathbb{C}: a z+b \in H_{0}\right\}$ and this is at least a partial motivation for our guess. As in part (a) of this problem, there is a kind of degenerate case which defies our guess: If $a=0 \in \mathbb{C}$, then $S=\{z \in \mathbb{C}: \operatorname{Re} b>0\}$, and we find the following (two) preliminary cases.

If $a=0$ and $\operatorname{Re} b \leq 0$, then $S=\phi$ is the empty set.
If $a=0$ and $\operatorname{Re} b>0$, then $S=\mathbb{C}$ is the entire complex plane.
Henceforth we assume $a \neq 0$. In order to give a nice treatment (or at least one way to give a nice treatment) of this exercise is to introduce a kind of general form for open half planes in \mathbb{C} generalizing the simple right half plane H_{c}. This may be done as follows: Given $u \in \mathbb{S}^{1}=\{z \in \mathbb{C}:|z|=1\}$ and $c \in \mathbb{R}$, we set

$$
\begin{equation*}
H_{u, c}=\left\{z \in \mathbb{C}: \bar{u} z \in H_{c}\right\}=\{z \in \mathbb{C}: \operatorname{Re}(\bar{u} z)>c\} . \tag{1}
\end{equation*}
$$

We claim this expression represents the rotation of H_{c} counterclockwise by the angle $\theta=\operatorname{Arg}(u)$ as indicated on the right in Figure 1. By this time, we should know

Figure 1: Open half planes.
any complex number $u \in \mathbb{S}^{1}$ in the unit circle ${ }^{1}$ of \mathbb{C} determines a unique principal argument $\theta \in[0,2 \pi)$ by

$$
\begin{equation*}
\cos \theta=\operatorname{Re} u \quad \text { and } \quad \sin \theta=\operatorname{Im} u \tag{2}
\end{equation*}
$$

and multiplication by u, i.e., $z \mapsto u z$, can be interpreted as counterclockwise rotation of z by the angle θ. More generally, any nonzero complex number z determines a principal argument $\theta \in[0,2 \pi)$ by

$$
\cos \theta=\operatorname{Re} \frac{z}{|z|} \quad \text { and } \quad \sin \theta=\operatorname{Im} \frac{z}{|z|}
$$

This of course doesn't work when $z=0$. Naturally, multiplication by $1 / u=\bar{u}$ corresponds to clockwise rotation by the argument of u. With this observation, we can see clearly the set $H_{u, c}$ defined in (1) represents the open half plane we have in mind. In fact, if $w \in H_{c}$ as illustrated on the left in Figure 1, then $z=u w$ is

[^0]in $H_{u, c}$ since $\bar{u} z=\bar{u} u w=w$. And conversely, if $z \in H_{u, c}$, then $w=\bar{u} z$ satisfies $\operatorname{Re} w=\operatorname{Re}(\bar{u} z)>c$ straight from the definition in (1), so $w \in H_{c}$.

At this point, we make two simple but useful observations about right open half planes H_{c}. First, any right open half plane may be expressed as

$$
H_{c}=\{z \in \mathbb{C}: \operatorname{Re} z>c\}=\{z \in \mathbb{C}: \operatorname{Re}(z+i t)>c\}
$$

where $i t \in i \mathbb{R}$ is any purely imaginary number. Second, in the special case $c=0$, a dilation may be introduced;

$$
H_{0}=\{z \in \mathbb{C}: \operatorname{Re} z>0\}=\{z \in \mathbb{C}: \operatorname{Re}(\mu z)>c\}
$$

where $\mu>0$ is any fixed positive real number.
Let us now state clearly what we want (and maybe need) to do: We want to identify $u \in \mathbb{S}^{1}$ and $c \in \mathbb{R}$ so that $S=H_{u, c}$ (in the case where $a \neq 0$). I think we can now do that pretty directly:

$$
\begin{aligned}
S & =\{z \in \mathbb{C}: \operatorname{Re}(a z+b)>0\} \\
& =\left\{z \in \mathbb{C}: a z+b \in H_{0}\right\} \\
& =\left\{z \in \mathbb{C}: a z+b-i \operatorname{Im} b \in H_{0}\right\} \\
& =\left\{z \in \mathbb{C}: a z+\operatorname{Re} b \in H_{0}\right\} \\
& =\left\{z \in \mathbb{C}: \frac{a z}{|a|}+\frac{\operatorname{Re} b}{|a|} \in H_{0}\right\} \\
& =\left\{z \in \mathbb{C}: \operatorname{Re}\left(\frac{a z}{|a|}+\frac{\operatorname{Re} b}{|a|}\right)>0\right\} \\
& =\left\{z \in \mathbb{C}: \operatorname{Re} \frac{a z}{|a|}+\frac{\operatorname{Re} b}{|a|}>0\right\} \\
& =\left\{z \in \mathbb{C}: \operatorname{Re} \frac{a z}{|a|}>-\frac{\operatorname{Re} b}{|a|}\right\} \\
& =\left\{z \in \mathbb{C}: \frac{a z}{|a|} \in H_{c}\right\}
\end{aligned}
$$

where

$$
c=-\frac{\operatorname{Re} b}{|a|} \in \mathbb{R}
$$

Notice we used $a \neq 0$ in the fifth line where we dilated by $\mu=1 /|a|$. Finally, then we have

$$
S=\left\{z \in \mathbb{C}: \bar{u} z \in H_{c}\right\}=H_{u, c}
$$

where

$$
u=\frac{\bar{a}}{|a|} \in \mathbb{S}^{1} \quad \text { since } \quad \frac{\overline{\bar{a}}}{|a|}=\frac{a}{|a|} .
$$

According to my notes, these were the values I gave for u and c in the lecture, though I had not fully prepared the solution/discussion and the explanation left a great deal to be desired. Hopefully, the written explanation above is closer to clear and correct.

Since I have the better part of a whole page blank below at this point, maybe I'll go ahead and type up the solution to the next part.

Part (f) Describe geometrically the set

$$
S=\{z \in \mathbb{C}:|z|=\operatorname{Re} z+1\}
$$

For this, I'm going to write $z=x+i y$. Then the condition $|z|=\operatorname{Re} z+1$, which involves only real numbers, becomes

$$
\sqrt{x^{2}+y^{2}}=x+1 .
$$

Squaring both sides, we have $x^{2}+y^{2}=x^{2}+2 x+1$ or $x=y^{2} / 2-1 / 2$. This condition, I recognize right away defines a parabola

$$
P=\left\{x+i y \in \mathbb{C}: x=\frac{1}{2} y^{2}-\frac{1}{2}\right\} .
$$

I'm inclined to guess that $S=P$, but I'm a little worried I might have introduced extra extraneous points in P when I squared the relation, so I had better check that. There are a couple ways to do this. One way is to go ahead and draw the parabola as I've done in Figure 2 and remember that a parabola is the set of points equidistant from a fixed point called the focus and a fixed line called the directrix. In this case, one can figure out pretty quickly, by checking the vertex $(-1 / 2,0)$ and the points $(0, \pm 1)$, that the focus is the origin and the directrix is $\operatorname{Re}(z)=-1$ as indicated in Figure 2. Thus, taking an arbitrary point in this parabola, the geometric condition defining the parabola is that the distance from the origin of a point w is the same as the distance from w to the vertical line $\operatorname{Re} z=-1$. That is,

$$
\begin{equation*}
|z|=|\operatorname{Re} z-(-1)|=\operatorname{Re} z+1 \tag{3}
\end{equation*}
$$

Here, of course, we need to know $\operatorname{Re} z>-1$, but since the vertex is at $(-1 / 2,0)$, this is clear. Furthermore, the condition (3) is precisely the condition determining S, so we are done. That is, we have verified

$$
P=\{z \in \mathbb{C}:|z|=\operatorname{Re} z+1\}=S
$$

Figure 2: The parabola $x=y^{2} / 2-1 / 2$.

Now, if you don't like to draw pictures, i.e., you are a stuffy algebraist instead of a happy-go-lucky geometer, then you might want to look somewhat more critically at the squared condition

$$
x^{2}+y^{2}=x^{2}+2 x+1=(x+1)^{2}
$$

and justify taking the square root of both sides. You'll get

$$
|z|=\sqrt{x^{2}+y^{2}}=|x+1| .
$$

But since

$$
x=\frac{y^{2}}{2}-\frac{1}{2} \geq-\frac{1}{2}
$$

we do know $x+1 \geq 1-1 / 2=1 / 2>0$, so $|x+1|=x+1$, so you get done (and get the same answer) this way too.

Part (g) Describe geometrically the set

$$
\{z \in \mathbb{C}: \operatorname{Im} z=c\}
$$

where $c \in \mathbb{R}$ is a fixed real number. This part is rather dissappointing. Of course, this is a horizontal line. The only somewhat amusing thing I can think to do with it is show that this line can be written as the counterclockwise rotation by $\theta=\pi / 2$ of
the vertical line $\{z \in \mathbb{C}: \operatorname{Re} z=c\}$ of the sorts considered in parts (c) and (d). That is,

$$
\{z \in \mathbb{C}: \operatorname{Im} z=c\}=\{i w \in \mathbb{C}: \operatorname{Re} w=c\}=\{z \in \mathbb{C}: \operatorname{Re}(-i w)=c\}
$$

But this is sort of all (painfully) obvious.
It also puts me back in the position of looking at the better part of a blank page below.

[^0]: ${ }^{1}$ Stein and Shakarchi do not introduce this fairly standard notation for the unit circle on page 6 where various related notations are introduced. They do give a standard notation to the unit ball or disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and in terms of this notation, the unit circle \mathbb{S}^{1} would be $\partial \mathbb{D}$. The notation $\mathbb{S}^{1}=\partial B_{1}(\mathbf{0})=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ is also used for the unit circle in \mathbb{R}^{2} where $B_{r}(p)$ is roughly equivalent to Stein's $D_{r}(z)$.

