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Here we are asked to describe geometrically the set

S = {z ∈ C : Re(az + b) > 0}

where a and b are two fixed complex numbers. We have seen in the previous part the
open right half plane

Hc = {z ∈ C : Re z > c}

where c ∈ R as indicated on the left in Figure 1, and our guess is the set S too is
some open half plane. In fact, we note that S = {z ∈ C : az + b ∈ H0} and this is at
least a partial motivation for our guess. As in part (a) of this problem, there is a kind
of degenerate case which defies our guess: If a = 0 ∈ C, then S = {z ∈ C : Re b > 0},
and we find the following (two) preliminary cases.

If a = 0 and Re b ≤ 0, then S = φ is the empty set.

If a = 0 and Re b > 0, then S = C is the entire complex plane.

Henceforth we assume a 6= 0. In order to give a nice treatment (or at least one
way to give a nice treatment) of this exercise is to introduce a kind of general form
for open half planes in C generalizing the simple right half plane Hc. This may be
done as follows: Given u ∈ S1 = {z ∈ C : |z| = 1} and c ∈ R, we set

Hu,c = {z ∈ C : uz ∈ Hc} = {z ∈ C : Re(uz) > c}. (1)

We claim this expression represents the rotation of Hc counterclockwise by the angle
θ = Arg(u) as indicated on the right in Figure 1. By this time, we should know
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Figure 1: Open half planes.

any complex number u ∈ S1 in the unit circle1 of C determines a unique principal
argument θ ∈ [0, 2π) by

cos θ = Reu and sin θ = Im u, (2)

and multiplication by u, i.e., z 7→ uz, can be interpreted as counterclockwise rotation
of z by the angle θ. More generally, any nonzero complex number z determines a
principal argument θ ∈ [0, 2π) by

cos θ = Re
z

|z|
and sin θ = Im

z

|z|
.

This of course doesn’t work when z = 0. Naturally, multiplication by 1/u = u
corresponds to clockwise rotation by the argument of u. With this observation, we
can see clearly the set Hu,c defined in (1) represents the open half plane we have
in mind. In fact, if w ∈ Hc as illustrated on the left in Figure 1, then z = uw is

1Stein and Shakarchi do not introduce this fairly standard notation for the unit circle on page 6
where various related notations are introduced. They do give a standard notation to the unit ball
or disk D = {z ∈ C : |z| < 1}, and in terms of this notation, the unit circle S1 would be ∂D. The
notation S1 = ∂B1(0) = {(x, y) ∈ R2 : x2+y2 = 1} is also used for the unit circle in R2 where Br(p)
is roughly equivalent to Stein’s Dr(z).
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in Hu,c since uz = uuw = w. And conversely, if z ∈ Hu,c, then w = uz satisfies
Rew = Re(uz) > c straight from the definition in (1), so w ∈ Hc.

At this point, we make two simple but useful observations about right open half
planes Hc. First, any right open half plane may be expressed as

Hc = {z ∈ C : Re z > c} = {z ∈ C : Re(z + it) > c}

where it ∈ iR is any purely imaginary number. Second, in the special case c = 0, a
dilation may be introduced;

H0 = {z ∈ C : Re z > 0} = {z ∈ C : Re(µz) > c}

where µ > 0 is any fixed positive real number.
Let us now state clearly what we want (and maybe need) to do: We want to

identify u ∈ S1 and c ∈ R so that S = Hu,c (in the case where a 6= 0). I think we can
now do that pretty directly:

S = {z ∈ C : Re(az + b) > 0}

= {z ∈ C : az + b ∈ H0}

= {z ∈ C : az + b− i Im b ∈ H0}

= {z ∈ C : az + Re b ∈ H0}

=

{

z ∈ C :
az

|a|
+

Re b

|a|
∈ H0

}

=

{

z ∈ C : Re

(

az

|a|
+

Re b

|a|

)

> 0

}

=

{

z ∈ C : Re
az

|a|
+

Re b

|a|
> 0

}

=

{

z ∈ C : Re
az

|a|
> −

Re b

|a|

}

=

{

z ∈ C :
az

|a|
∈ Hc

}

where

c = −
Re b

|a|
∈ R.

Notice we used a 6= 0 in the fifth line where we dilated by µ = 1/|a|. Finally, then
we have

S = {z ∈ C : uz ∈ Hc} = Hu,c
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where

u =
a

|a|
∈ S

1 since
a

|a|
=

a

|a|
.

According to my notes, these were the values I gave for u and c in the lecture, though
I had not fully prepared the solution/discussion and the explanation left a great deal
to be desired. Hopefully, the written explanation above is closer to clear and correct.

Since I have the better part of a whole page blank below at this point, maybe I’ll
go ahead and type up the solution to the next part.

Part (f) Describe geometrically the set

S = {z ∈ C : |z| = Re z + 1}.

For this, I’m going to write z = x + iy. Then the condition |z| = Re z + 1, which
involves only real numbers, becomes

√

x2 + y2 = x+ 1.

Squaring both sides, we have x2+y2 = x2+2x+1 or x = y2/2−1/2. This condition,
I recognize right away defines a parabola

P =

{

x+ iy ∈ C : x =
1

2
y2 −

1

2

}

.

I’m inclined to guess that S = P , but I’m a little worried I might have introduced
extra extraneous points in P when I squared the relation, so I had better check that.
There are a couple ways to do this. One way is to go ahead and draw the parabola as
I’ve done in Figure 2 and remember that a parabola is the set of points equidistant
from a fixed point called the focus and a fixed line called the directrix. In this case,
one can figure out pretty quickly, by checking the vertex (−1/2, 0) and the points
(0,±1), that the focus is the origin and the directrix is Re(z) = −1 as indicated in
Figure 2. Thus, taking an arbitrary point in this parabola, the geometric condition
defining the parabola is that the distance from the origin of a point w is the same as
the distance from w to the vertical line Re z = −1. That is,

|z| = |Re z − (−1)| = Re z + 1. (3)

Here, of course, we need to know Re z > −1, but since the vertex is at (−1/2, 0), this
is clear. Furthermore, the condition (3) is precisely the condition determining S, so
we are done. That is, we have verified

P = {z ∈ C : |z| = Re z + 1} = S.
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Figure 2: The parabola x = y2/2− 1/2.

Now, if you don’t like to draw pictures, i.e., you are a stuffy algebraist instead of a
happy-go-lucky geometer, then you might want to look somewhat more critically at
the squared condition

x2 + y2 = x2 + 2x+ 1 = (x+ 1)2

and justify taking the square root of both sides. You’ll get

|z| =
√

x2 + y2 = |x+ 1|.

But since

x =
y2

2
−

1

2
≥ −

1

2

we do know x+ 1 ≥ 1− 1/2 = 1/2 > 0, so |x+ 1| = x+ 1, so you get done (and get
the same answer) this way too.

Part (g) Describe geometrically the set

{z ∈ C : Im z = c}

where c ∈ R is a fixed real number. This part is rather dissappointing. Of course,
this is a horizontal line. The only somewhat amusing thing I can think to do with it
is show that this line can be written as the counterclockwise rotation by θ = π/2 of
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the vertical line {z ∈ C : Re z = c} of the sorts considered in parts (c) and (d). That
is,

{z ∈ C : Im z = c} = {iw ∈ C : Rew = c} = {z ∈ C : Re(−iw) = c}.

But this is sort of all (painfully) obvious.

It also puts me back in the position of looking at the better part of a blank page
below.
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