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We have established the basic convergence/divergence theorem for complex power
series

∞
∑

n=0

anz
n (1)

involving the Hadamard radius R. This result defines the region of absolute con-
vergence DR(0) on which

f(z) =

∞
∑

n=0

anz
n

defines a holomorphic function. This result also defines a region of divergence
C\DR(0) on which the series in (1) diverges. We have observed that this divergence
can take two distinct forms. One case is that in which the values of the partial sums

SN =
N
∑

n=0

anz
n

actually converge to ∞ (in the Riemann sphere). The complementary case is when
some subsequence of the partial sums remains bounded. For a given series (1) we
have defined the region

ΩS = {z ∈ C\DR(0) : SN → ∞}

and called it the Savio region after Daniel Savio who was the first one (in our complex
analysis class of Spring 2022) to ask about the nature of the divergence. We have no
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proof that ΩS 6= φ in general, but we do know ΩS = C\D1(0) for the geometric series

∞
∑

n=0

zn.

This is because for |z| > 1, we have for the geometric series

SN =
N
∑

n=0

zn =
1− zN+1

1− z
.

This implies

|SN | ≥
|z|N+1 − 1

|1− z| → ∞ as N ր ∞.

Part of the objective of this document is to fully characterize the geometric series
considering also the sequence of partial sums when |z| = 1.

In response to Daniel’s question Katherine Booth constructed a family of series
for which the complementary region

ΩB =

{

z ∈ C\DR(0) : lim inf
N→∞

∣

∣

∣

∣

∣

N
∑

n=0

anz
n

∣

∣

∣

∣

∣

< ∞
}

is nonempty. The radius of convergence for these examples is R = 1 and the set ΩB

consists of precisely one point x > 1 on the real axis as indicated in Figure 1. I will
now try to explain why this is the case. These series are constructed in more detail in
a previous document on The Domain of Divergence for Complex Power Series, but
to summarize the construction one can take points a0, a1, a2 ∈ S

1 with

a0 + a1x+ z2x
2 = 0 (2)

for some real x > 1. Then the series

∞
∑

n=0

anz
n

with a3k = a0, a3k+1 = a1, and a3k+2 = a2 for k = 0, 1, 2, 3, . . . clearly has

S3k+2(x) =

3k+2
∑

n=0

anx
n = 0.
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Figure 1: The Savio region (shaded blue outide the unit disk) for a Booth series with
a single isolated Booth point x ∈ R (indicated in red).

It turns out that given any a0 with |a0| = 1, the relation (2) determines values of a1
and a2 as a function of x for x in a particular real interval

−1 +
√
5

2
≤ x ≤ 1 +

√
5

2
.

Thus one obtains examples with x ∈ ΩB and ΩS 6= C\DR(0). We observe, furthermore
that for |z| > 1,

∞
∑

n=0

anz
n = (a0 + a1z + a2z

2)
∞
∑

k=0

zk.

The quadratic polynomial

p(z) = a2z
2 + a1z + a0 = a2(z − x)

(

z − a0
a2x

)

has roots
x and

a0
a2x

.

Notice that the second root lies inside D1(0) since
∣

∣

∣

∣

a0
a2x

∣

∣

∣

∣

=
1

x
< 1.
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In particular, if |z| > 1 but z 6= x, then Z = a0 + a1z + a2z
2 is a fixed nonzero

constant, and
∞
∑

n=0

anz
n = (a0 + a1z + a2z

2)
∞
∑

ℓ=0

zℓ.

shares the divergence behavior of the geometric series. More precisely,

SN =

N
∑

n=0

anz
n =



























































(a0 + a1z + a2z
2)

K
∑

ℓ=0

zℓ, N = 3K

(a0 + a1z + a2z
2)

K
∑

ℓ=0

zℓ + a0z
3K+1, N = 3K + 1

(a0 + a1z + a2z
2)

K
∑

ℓ=0

zℓ + a0z
3K+1 + a1z

3K+2, N = 3K + 2.

We have, furthermore,
K
∑

ℓ=0

zℓ =
1− zK+1

1− z
.

Therefore, when N = 3K, we have

|S3K | = |Z|
∣

∣

∣

∣

1− zK+1

1− z

∣

∣

∣

∣

> |Z| |z|
K+1 − 1

|1− z| → ∞.

When N = 3K + 1 and for K large

|S3K+1| =
∣

∣

∣

∣

Z
1− zK+1

1− z
+ a0z

3K+1

∣

∣

∣

∣

≥ |a0z3K+1| − |Z| |1− zK+1|
|1− z|

> |z|3K+1 − 2|Z| |z|
K+1

|1− z|

= |z|K+1

(

|z|2k − 2|Z|
|1− z|

)

→ ∞.
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Similarly, when N = 3K + 2 and for K large

|S3K+2| =
∣

∣

∣

∣

Z
1− zK+1

1− z
+ a0z

3K+1 + a1z
3K+2

∣

∣

∣

∣

≥ |a2z3K+2| − |a0z3K+1| − |Z| |1− zK+1|
|1− z|

> |z|3K+2 − |z|3K+1 − 2|Z| |z|
K+1

|1− z|

= |z|3K+2

(

1− 1

|z| −
2|Z|
|1− z|

1

|z|2K+1

)

→ ∞

since 1− 1/|z| > 0 and

2|Z|
|1− z|

1

|z|2K+1
→ 0 as K ր ∞.

We have established that for these series ΩB = {x}. We note that ΩS is open in this
case, but we have no general proof that ΩS is always open and/or nonempty.

Boundary Behavior

Some of the ideas above extend naturally to the boundary of the disk of convergence
where |z| = R. In this case, there are more possibilities. There can still be convergence
of the partial sums to ∞ (Savio points) and divergence with a subsequence of partial
sums remaining bounded (Booth points), but there may also be points of convergence
and even absolute convergence. Among all these may be further distinctions. First
of all, let us call a point with |z| = R for which the series

∞
∑

n=0

anz
n (3)

with radius of convergence R converges a Liebniz point. The value of the convergent
series at a Leibniz point is given by Abel’s theorem in terms of the holomorphic
function

f(z) =
∞
∑

n=0

anz
n

defined by the series on the open disk DR(0). We have discussed the proof of Abel’s
limit point theorem elsewhere, but let me state a version suitable for the present
context:
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Theorem 1 (Abel limit point theorem) Given a formal series (3) with radius of
convergence R > 0 and a (Liebniz) point z with |z| = R for which the series converges
to a complex number w, we have

w = lim
tր1

f(t z) = lim
tր1

∞
∑

n=0

ant
nzn. (4)

Part of the assertion of the theorem, of course, is that the limit appearing in (4)
exists. It turns out that this limit

α = lim
tր1

f(t z) = lim
tր1

∞
∑

n=0

ant
nzn (5)

can exist sometimes even when the series is not convergent at z ∈ ∂DR(0). In
this case, we say the series is Abel summable and take the limit α ∈ C in (5) as
the Abel sum. For example, the geometric series defining g : D1(0) → C by

g(z) =

∞
∑

n=0

zn =
1

1− z
(6)

evaluated at z = −1 becomes

1− 1 + 1− 1 + . . .

which does not converge. In fact, notice that the partial sums are 1, 0, 1, 0, . . ., so this
is a Booth (boundary) point for the geometric series. Nevertheless, but for−1 < x < 1

∞
∑

n=0

xn =
1

1− x

so α = limxց−1 g(x) = 1/2, so we say the formal series
∞
∑

n=0

(−1)n

is Abel summable with Abel sum α = 1/2. I think most attention to Abel summability
has been given to cases like this where a finite value is assigned to a divergent series.
I don’t know much about cases where the Abel limit does not exist (as a complex
number). Presumably, the values f(t z), when the Abel limit does not exist, may
either tend to infinity (in the Riemann sphere) or maintain bounded values for t
arbitrarily close to 1. Here is a conjecture one might be able to prove:

Conjecture 1 If z is a Savio (boundary) point for a formal power series, then the
Abel limit is also infinity.
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The Geometric Series

For the geometric series, it is evident from (6) that the Abel limit

α = lim
tր1

g(tz)

exists for every z ∈ S1 except z = 1 and takes the value

α(z) = lim
tր1

g(tz) =
1

1− z
, z 6= 1. (7)

Thus, the series is Abel summable at all points in the circle (except z = 1). We
already noted that the series does not converge at the antipodal points z = ±1 with
the left point being a Booth point and the right point being a Savio point. Let us
see if we can characterize the boundary behavior of the geometric series at the other
points with |z| = 1.

This is actually pretty easy becuase we still have an explicit formula for the partial
sums:

SN =
N
∑

n=0

einθ =
1− ei(N+1)θ

1− eiθ
(8)

θ 6= 2πk, k ∈ Z = {0,±1,±2, . . .}. Clearly then

|SN | ≤
2

1− eiθ
< ∞,

so none of these points are Savio (boundary) points. On the other hand,

∣

∣ei(k+1)θ − eikθ
∣

∣ =
∣

∣1− eiθ
∣

∣ > 0

when θ 6= 2πk, k ∈ Z = {0,±1,±2, . . .}. This means the sequence of partial sums
cannot be Cauchy. In fact,

SN − SN−1 = eiNθ

has modulus 1 (which is no surprise since each term itself is of modulus 1, that is
to say, the series obviously fails the basic necessary condition for convergence). The
point is that none of these points are Liebniz points either. They are all Booth points.

This situation is illustrated in Figure 2.
The last thing I would like to do is try to see if there is any relation between the

Abel limit corresponding to a Booth point z ∈ S1\{1} for the geometric series and
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Figure 2: The Savio region (shaded blue outide the unit disk) for the geometric series
with a single Savio point z = 1 in S1 (indicated in blue) and all remaining boundary
points Booth points (indicated in red).

the sequence of partial sums. Note that for z = −1, the Abel limit α = g(−1) = 1/2
is the average value of the alternating partial sums 1, 0, 1, 0, . . .. Likewise, for the
Savio point z = 1, one can say the Abel limit is the limit of the average values

Ak =
S0 + S1 + S2 + S3 + . . .+ Sk

k + 1

of the partial sums. I vaguely remember reading about some theorem in either Rudin’s
Principles of Mathematical Analysis or Körner’s Fourier Analysis relating some kind
of averages to something like Abel sums. In any case, let’s see what we can say (or
see).

First of all for z = eiθ the Abel sum is

α =
1

1− z
=

1

1− eiθ
=

1− cos θ + i sin θ

2(1− cos θ)
=

1

2
+ i

sin θ

2(1− cos θ)
.

It is interesting that the real part is always 1/2 and the imaginary part always takes
the sign of Im z. The partial sum formula (8) can also be simplified as

SN =
1− cos θ − cos[(N + 1)θ] + cos(Nθ)

2(1− cos θ)
+ i

sin θ − sin[(N + 1)θ] + sin(Nθ)

2(1− cos θ)
.
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Let us consider as a first case z = i = eiπ/2. The partial sums are seen to repeat a
cycle of length four in accord with the powers of i:

1, 1 + i, i, 0, 1, . . .

These are (consecutively and in counterclockwise order) the points at the corners of
the unit square in the first quadrant as indicated in red in Figure 3. The sequence of
averages Ak looks like

1, 1 +
1

2
i,

2

3
(1 + i),

1

2
(1 + i),

3

5
+

2

5
i,

2

3
+

1

2
i,

4

7
+

4

7
i,

1

2
(1 + i), . . .

I did not prove it, but it seems clear that the averages of the partial sums converge

Figure 3: The geometric series
∑

in. Here the sequence of partial sums is indicated
in red starting from S0 = 1. The consecutive averages Ak are plotted in green, and
the Abel limit α is plotted in magenta.

to the Abel limit of (1+ i)/2 which is also the center of the square determined by the
cycle of the partial sums.

The plot for z = −i looks like the conjugate of the plot in Figure 3, as should be
expected with Abel sum (1 − i)/2. Figure 4 shows the first few terms of the partial
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Figure 4: The geometric series
∑

zn with z = eiθ, θ = π/6. The sequence of partial
sums is indicated in red starting from S0 = 1. The consecutive averages Ak are
plotted in green, and the Abel limit α is plotted in magenta.

sums and the averages as well as the Abel limit α = [1+ (2+
√
3)i]/2 when θ = π/6.

In the examples we have considered with argument a rational multiple of π, the
partial sums Sk apparently cycle through the the origin as well as S0 = 1. It appears
also that the averages Ak cycle through the Abel sum and converge to it. We shall
consider last an example with z = eiθ where θ is not a rational multiple of π, namely
θ = 1. See Figure 5.

Motivated by these examples, the following can presumably be verified.

Conjecture 2 For z = eiθ ∈ S1\{1} the sequence of partial sums for the geometric
series

∞
∑

n=0

zn

lies on a circle of radius
∣

∣

∣

∣

1

2
+

sin θ

2(1− cos θ)
i− 1

∣

∣

∣

∣

=
1

2| sin(θ/2)|

with center the Abel sum

α =
1

2
+

sin θ

2(1− cos θ)
i.
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Figure 5: The geometric series
∑

eni =
∑

(cos n+ i sinn) corresponding to argument
θ = 1 (radian). The sequence of partial sums is indicated in red starting from S0 = 1.
The consecutive averages Ak are plotted in green, and the Abel limit α is plotted in
magenta.

and the Abel sum is the limit of the consecutive averages

α = lim
k→∞

Ak, Ak =
1

k + 1

k
∑

N=0

SN .

This seems to essentially completely characterize the behavior of the geometric series.
(At least I can’t think of any other questions to ask about it.)

11


