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The following is an attempt to give an account of observations and results related
to a question originally asked by Daniel Savio in the Spring semester of 2022 regarding
the behavior of divergent power series in complex analysis. The subject may be well-
known to some, but I must confess it is a new direction of inquiry for me encompassing
questions and constructions which I am quite sure I have not seen before. I’m not
entirely sure of the overall depth of the subject, but at least superficially it seems
worth considering if not somewhat exciting.

1 Introduction

Given a formal power series
∞
∑

n=0

anz
n

determined by complex numbers/coefficients a0, a1, a2, a3, . . ., the basic theorem about
power series asserts that the series converges and determines a complex differentiable
function f : DR(0) → C on a disk DR(0) determined by the Hadamard radius

R =
1

lim supn→∞ |an|1/n
. (1)

Moreover the series diverges for |z| > R. Daniel Savio asked if the divergence
occurring for |z| > R satisfies

∞
∑

n=0

anz
n = ∞ ? (2)
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That is, given any M > 0, is it possible to find some N ∈ N for which k > N implies

∣

∣

∣

∣

∣

k
∑

n=0

anz
n

∣

∣

∣

∣

∣

> M ?

I initially suggested that the answer was “no,” but I was unable to construct an
example. A couple days later Katherine Booth did construct an example confirming
my suspicion, and I hope to offer a detailed exposition of Katherine’s example below
as well as some additional observations.

It seems advisable to restrict to a particular class of formal series and introduce
some terminology. We are interested in formal series

∞
∑

n=0

anz
n

with finite Hadamard radius given by (1). In this case,

L = lim sup
n→∞

|an|1/n

is a positive extended real number with L ∈ (0,∞]. Let us define the Savio region

ΩS of a given series by

ΩS =

{

z ∈ C\DR(0) : lim
N→∞

N
∑

n=0

anz
n = ∞

}

.

Before proceeding further, I’d like to review the proof of the basic convergence result
and observe what it tells us about behavior in the region of divergence C\DR(0).
The proof is also in Stein and Shakarchi, but I present it with minor notational
differences—hopefully improvements.

Let us assume first that |z| < R. Notice that L must be a finite (positive) number
in this case and we can write

|z| < 1

L
.

Consequently, there is some ǫ > 0 for which it is also true that

|z| < 1

L+ ǫ
. (3)
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On the other hand, lim supn→∞ |an|1/n = L, so there is some N for which n > N
implies

|an|1/n < L+ ǫ.

It follows then that for K > N + 1

K
∑

n=0

|an zn| =
N
∑

n=0

|an| |z|n +
K
∑

n=N+1

(

|an|1/n |z|
)n

<

N
∑

n=0

|an| |z|n +
K
∑

n=N+1

((L+ ǫ) |z|)n .

Notice that N and |z| are fixed here, so the first term/sum

N
∑

n=0

|an| |z|n

is some fixed finite nonnegative number. Furthermore, by (3) we know

(L+ ǫ) |z| < 1,

so we can estimate the second term as follows:

K
∑

n=N+1

((L+ ǫ) |z|)n ≤
∞
∑

n=0

((L+ ǫ) |z|)n < ∞.

The key observation here is that the number

∞
∑

n=0

((L+ ǫ) |z|)n

is fixed (and finite) independent of K. This means

∞
∑

n=0

|an zn| < ∞

and the series
∑

anz
n is absolutely summable/convergent.

The more interesting part of the basic convergence result for our current con-
siderations applies in the case |z| > R. Here we know L > 0, and that is a given
assumption for our series of finite Hadamard radius. If L is finite, we can write

|z| > 1

L
.
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Here the condition
lim sup
n→∞

|an|1/n > L

implies that for some ǫ > 0 there exists a subsequence nk, k = 1, 2, 3, . . . for which

|ank
|1/nk > (1 + ǫ)L.

Consequently,
|ank

| |z|nk =
(

|ank
|1/nk |z|

)nk

> (1 + ǫ)nk → +∞
as k ր ∞. Thus,

∑

anz
n does not satisfy the basic necessary condition for

convergence of a complex series. See section 1 of my notes on convergence of series.
It is in this sense that the basic convergence result gives us divergence of the series
for z ∈ C\DR(0).

Let us briefly return to consider the case L = ∞ in which the condition |z| > R
becomes simply |z| > 0. In this case, there is a subsequence of indices nk for k =
1, 2, 3, . . . with

|ank
|1/nk > k. (4)

Then
|ank

| |z|nk =
(

|ank
|1/nk |z|

)nk

> (k|z|)nk → +∞,

and we reach the same conclusion. Note that it would be adequate to replace k on
the right in (4) with (1 + ǫ)/|z| for any ǫ > 0. �

Also in my notes on convergence I gave an example (simply the obvious example
of the geometric series) demonstrating that, in at least some instances, the Savio
region associated with a formal complex power series is nonempty. I didn’t double
check the details in those notes, but I verified the assertion independently again and
generalized it slightly. I will present the resulting family of simple examples before
continuing to the more sophisticated examples of Katherine Booth.

Example (McCuan) Consider a series
∑

anz
n with coefficients satisfying

|an| = m > 0 for all n sufficiently large.

That is, there is some N0 such that |an| = m for n ≥ N0. The geometric series

∞
∑

n=0

zn
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is such a series with N0 = 0 and an = 1 for all n. The Hadamard radius of any such
series is R = 1 since

lim
n→∞

m1/n ∼ exp

(

lim
n→∞

logm

n

)

= e0.

Let us assume first N0 = 0. Let us also assume initially that |z| > 1. The triangle
inequality gives

m |z|N = |aN | |z|N

=
∣

∣aN zN
∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=0

an z
n −

N−1
∑

n=0

an z
n

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

N
∑

n=0

an z
n

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

N−1
∑

n=0

an z
n

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

N
∑

n=0

an z
n

∣

∣

∣

∣

∣

+

N−1
∑

n=0

|an| |z|n

=

∣

∣

∣

∣

∣

N
∑

n=0

an z
n

∣

∣

∣

∣

∣

+m
N−1
∑

n=0

|z|n

=

∣

∣

∣

∣

∣

N
∑

n=0

an z
n

∣

∣

∣

∣

∣

+m
1− |z|N
1− |z| .

It follows that
∣

∣

∣

∣

∣

N
∑

n=0

an z
n

∣

∣

∣

∣

∣

≥ m

(

|z|N − 1− |z|N
1− |z|

)

= m
|z|N+1 − 2|z|N + 1

|z| − 1
= m

|z|N(|z| − 2) + 1

|z| − 1
.

Thus, restricting further to |z| > 2 we have

lim
Nր∞

N
∑

n=0

an z
n = ∞,

and
ΩS ⊃ C\D2(0) (5)
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for all such power series.
Repeating the estimation above when N0 > 0 and |z| > 1, we get

m |z|N =
∣

∣aN zN
∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=0

an z
n −

N0−1
∑

n=0

an z
n −

N−1
∑

n=N0

an z
n

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

N
∑

n=0

an z
n

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

N0−1
∑

n=0

an z
n

∣

∣

∣

∣

∣

+m
1− |z|N
1− |z| .

The following estimate becomes
∣

∣

∣

∣

∣

N
∑

n=0

an z
n

∣

∣

∣

∣

∣

≥ m
|z|N (|z| − 2) + 1

|z| − 1
−
∣

∣

∣

∣

∣

N0−1
∑

n=0

an z
n

∣

∣

∣

∣

∣

.

Since the last term is fixed, we conclude the Savio region is again nonempty and
contains an annular neighborhood of infinity according to (5).

2 Booth Series and Booth Region

Katherine considered specific series in the class of my examples above under the
following assumptions:

1. The coefficients an satisfy |an| = 1 and

2. The coefficients repeat in a cycle of 3 with a3k = a0, a3k+1 = a1, and a3k+2 = a2
for k = 0, 1, 2, 3, . . ..

Her objective was to choose the three complex coefficients a0, a1, and a2 so that the
sequence of partial sums determined by

Sk =

k
∑

n=0

anz
n

contains a bounded subsequence for some fixed z ∈ C\DR(0). As mentioned above
the Hadamard radius is given by R = 1 for such a formal series, and my examples
above also imply that z must satisfy

1 < |z| ≤ 2.
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Katherine also made the crucial ansatz that not only does she want a bounded sub-
sequence, but such a subsequence will be given by S2, S5, S8, . . . with S3k+2 ≡ 0 for
k = 0, 1, 2, 3, . . .. This, she observes can be accomplished if

S2 = a0 + za1 + z2a2 = 0, (6)

since each succeeding triple of terms in the partial sum will have the form:

a0z
3k + a1z

3k+1 + a2z
3k+2 = z3k

(

a0 + za1 + z2a2
)

.

Finally Katherine assumes z = 3/2, but let us generalize this slightly and simply
assume z = x ∈ (1,∞) for the time being. Then given x > 1, we seek three complex
numbers a0, a1, and a2 satisfying

a0 + xa1 + x2a2 = 0. (7)

Finally, with a view toward a geometric interpretation and later generalization, let
me assume a0 = 1.1

Writing also
a1 = eiθ1 and a2 = eiθ2

we can see geometrically what the condition (6) means in this case, and the potential
viability of determining the angles θ1 and θ2 so that it holds. More precisely, we want

1 + xeiθ1 + x2eiθ2 = 0 (8)

which means, as indicated in Figure 1, the following should hold:

1. the point xa1 lies on a circle of radius x and on the horizontal line Im z = x sin θ1.

2. The point x2a2 lies on a circle of radius x2 > x but with Im(x2a2) = − Im(xa1) =
− sin θ1 so that Im(xa1 + x2a2) = 0.

3. It follows from the previous condition and the fact that x2 > x because x > 1
that |Re(x2a2)| > |Re(xa1)|.

4. Since we want Re(xa1 + x2a2) = −1, we need Re(x2a2 < 0, i.e., a2 is in the
second or third quadrant. We have chosen a2 to be in the third quadrant, and
a1 (must be) in the first quadrant.

1If I am understanding Katherine’s construction correctly, she assumed instead a2 = −i and

x = 3/2.
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Figure 1: The three Booth points a0 = 1, a1 = eiθ1 , and a2 = eiθ2 .

These geometric conditions do not give a solution (a1, a2) of the desired equation (6,
7, 8), but they show the existence is at least plausible. Furthermore, the choice of
quadrants for a1 and a2 allows us to treat the equations more easily (and with more
insight) as we now demonstrate.

We begin by writing (8) as

{

x cos θ1 + x2 cos θ2 = −1
x sin θ1 + x2 sin θ2 = 0.

With the substitutions

cos θ2 = −x cos θ1 + 1

x2
< 0,

and
sin θ1 =

√

1− cos2 θ1 and sin θ2 = −
√

1− cos2 θ2

with the signs in the latter two substitutions chosen with the help of Figure 1, we can
write

cos2 θ2 =
1 + 2x cos θ1 + x2 cos2 θ1

x4

and
x
√

1− cos2 θ1 =
√

x4 − 1− 2x cos θ1 − x2 cos2 θ1.
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Squaring both sides gives
x2 = x4 − 1− 2x cos θ1

or

cos θ1 =
x4 − x2 − 1

2x
. (9)

Let us pause at this point and consider the restrictions imposed on x by the necessary
condition 0 < cos θ1 < 1 arising from the choice indicated in Figure 1. In Figure 2 we
have plotted the quotient

φ(x) =
q(x)

2x

where q(x) = x4 − x2 − 1 is an even quartic polynomial. This function φ has some

Figure 2: A function giving restrictions on the choice of the real parameter x > 1.
A plot of the even quartic polynomial q(x) = x4 − x2 − 1 is indicated with a dashed
curve.

properties as indicated by the plot and easily verified. In particular, we are interested
in values of φ corresponding to angles θ1 in the first quadrant, that is, with 0 <
φ(x) < 1. These values correspond to an interval x0 ≤ x < x2

0 where x
2
0 is the positive

root of the equation φ(x) = 1 or the positive root of quartic polynomial

q(x)− 2x = x4 − x2 − 1− 2x = x4 − (x+ 1)2 = (x2 − x− 1)(x2 + x+ 1).

That is,

x2

0 =
1 +

√
5

2
and x0 =

√

1 +
√
5

2
.
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The endpoint x = x2
0 where cos θ1 = 1 and θ1 = 0 seems to correspond to a purely

real solution a1, which is interesting since presumably there is a corresponding value
of θ2 = π, and it is possible to take a0 = 1, a1 and a2 all real. The geometry suggests
that the other endpoint x = x0 may be artificial with possible values of θ1 beyond
the one corresponding to θ1 = π/2 with θ1 in the second quadrant (and θ2 still in the
third quadrant). Indeed, it may be natural to consider a left endpoint determined by
the positive root of φ(x) = −1. This may lead to a different choice of real a1 and a2.
I guess that is correct with the left endpoint being

ξ20 =
−1 +

√
5

2
.

For each x in this interval (9) determines a value of θ1 on [0, π] and consequently a
value of a1 in the closed upper half of the circle S1.

Returning to our system of equations, we find

cos θ2 = −x4 − x2 + 1

2x2
. (10)

In Figure 3 we have added the plot of cos θ2 (which is seen to remain negative) along
with the bounds cos θ = ±1.

Figure 3: The function determining θ2 as a function of x on the same interval ξ20 ≤
x ≤ x2

0 for the real parameter x > 1. A plot of the even quartic polynomial q(x) =
x4 − x2 + 1 is indicated with a dashed curve.

The geometry strongly suggests we should be able to take eiαa0 = eiα, eiαa1, and
eiαa2 for any choices of a1 and a2 obtained above and any unit complex number eiα

to obtain a series with the desired property, namely that every partial sum S3k+2 = 0
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for k = 0, 1, 2, 3, . . . and the appropriate choice of x. I suppose the algebra bears this
assertion out. Presumably the choice x = 3/2 and eiα = −i gives, up to a possible
permutation/rearrangement of points, the example Katherine gave.

This shows of course, that the Savio region ΩS is not always all of C\DR(0). This
example also shows that it is natural to define a complementary region, which we can
call the Booth region ΩB by

ΩB =

{

z ∈ C\DR(0) : lim inf
N→∞

∣

∣

∣

∣

∣

N
∑

n=0

anz
n

∣

∣

∣

∣

∣

< ∞
}

.

Each triple of numbers {1, a1, a2} or more generally

{

eiα, eiαa1, e
iαa2

}

for which eiα + xeiαa1 + x2eiαa2 = 0 (11)

is also quite interesting and worthy of a name. Take, for example the cube roots of
w = 1 ∈ C. These are

{

1,−1

2
+ i

√
3

2
,−1

2
− i

√
3

2

}

,

and you will notice that the sum of the three roots is zero. Of course, these points all
lie on the unit circle S

1. I think it would be quite interesting to understand in what
sense a triple satisfying (11) which we might call a Booth triple generalizes a unit
rotation of the roots of unity

{

eiα, eiα

(

−1

2
+ i

√
3

2

)

, eiα

(

−1

2
− i

√
3

2

)}

.

Finally, it might be interesting to understand if this construction can be extended to
cycles of coefficients of a longer length (with a view toward generalizing properties of
the higher order roots of unity corresponding to x = 1.)

3 Open Problems

Katherine tells me there is numerical evidence to suggest that the Savio region for
the geometric series

∞
∑

n=0

zn
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with an = 1 for all n is ΩS = C\B1(0). This would mean the Booth region is empty.
But we have no proof either way even for the geometric series. In particular, there is
no proof that the Booth region is always non-empty, and the numerics suggest this
can happen.

Update:2 Actually, we know the explicit formula for the partial sums of the geometric
series. Thus, we can say the following: For |z| > 1,

SN =
N
∑

n=0

zn =
1− zN+1

1− z
.

In particular,

|SN | ≥
|z|N+1 − 1

|1− z| → ∞ as N ր ∞.

This gives two interesting conclusions:

The geometric series is an example in which the Savio region is the entire

domain of divergence:

For

∞
∑

n=0

zn, ΩS = C\D1(0).

This observation tells us something also about Katherine’s examples above: If

∞
∑

n=0

anz
n =

∞
∑

k=0

(a0 + a1z + a2z
2)zk

with |a0| = |a1| = |a2| = 1 and a0 + a1x+ z2x
2 = 0 for some x with −1 +

√
5 ≤ 2x ≤

1 +
√
5, then

∞
∑

n=0

anz
n = (a0 + a1z + a2z

2)
∞
∑

k=0

zk. (12)

The polynomial a0 + a1z + a2z
2 has two roots one of which is x and x > 1. It can

be shown that the other root ζ satisfies |ζ | < 1. Therefore, for |z| > 1, we know
a0 + a1z + a2z

2 is nonzero, and the partial sums for this Booth series tend to ∞
because of the geometric series appearing in (12).

2Original document February 2, 2022. Update: February 4, 2022.
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For a Booth series corresponding to the parameter x the Savio region is

given precisely by

ΩS = C\
(

D1(0) ∪ {x}
)

(13)

and the Booth region consists of a single isolated point ΩB = {x}.

I will discuss these observations in a little more detail in a separate document which
brings in boundary behavior to the discussion.

To end the update, I might add that, especially in view of the fact that ΩS is open
in every case in which we know the set explicitly namely in the cases of a geometric
series and in (13), it seems reasonable to suggest ΩS is always open. That might be
a reasonable thing to try to prove.

Unfortunately, my example does not seem to generalize easily to imply the Savio
region is always nonempty. It would be interesting to prove there is always an annular
neighborhood of infinity in the Savio region, but it does not appear to be easy.

So far we do have an example with both ΩS and ΩB non-empty, but it’s not the
geometric series.

I feel like I had isolated another, fundamentally different, question about the
relation between the divergence region, ΩB and ΩS, but I can’t think of it at the
moment, and it’s late, so I’m going to stop.

Another Update: I’m not sure this is the question I had in mind, but it might be.

Given a point in the domain of divergence C\DR(0), is it possible to show
there always exists a subsequence of partial sums tending to ∞?
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