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We wish to generalize here the elementary picture indicated in Figure 1. The

Figure 1: Plots of three quadratic polynomials on the same pair of real axes.

plots show the values of three polynomials p(x) = a2x
2 + a1x + a0 and the roots,

or solutions of the equation p(x) = 0, nicely indicating three distinct cases: (1) two
real roots, (2) a single real root of multiplicity two, and (3) no real roots. The
illustration is limited in application to polynomials with real coefficients, and it does
not illustrate anything about the roots when they are complex valued. It is our
objective to illustrate in terms of complex mappings, and specifically a homotopy
construction of Dan Romik (employed to give a topological proof of the fundamental
theorem of algebra), the geometric location and necessity of roots in the complex plane
of a quadratic polynomial p(z) = a2z

2 + a1z + a0 with possibly complex coefficients.
The discussion may also be considered as related to Ahlfors’ Exercise 1.2.4. In

fact, from the point of view of a student of complex analysis, or from the point of view
of writing an exposition of complex analysis, the discussion below may be considered
as a kind of alternative to Exercise 1.2.4 of Ahlfors. Both are rather involved if all the
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details are considered. I think the discussion below may be somewhat more instructive
overall than careful consideration of the complex square root in the quadratic formula.

Romik’s idea is relatively straightforward. The function p represents an entire
holomorphic function mapping the complex plane into the complex plane. Apart
from the origin 0 ∈ C, the plane can be partitioned by circles

∂Dr(0) = {z ∈ C : |z| < r}
centered at 0 and having radius r > 0. Specifically, the punctured plane may be
continuously “swept out” by these circles. If the image of each circle ∂Dr(0) under
the polynomial p can be determined, plotted, and understood, one should be able
to see each root of p as a point z in a specific circle with image p(z) = 0. More
precisely, we the mapping h(t, r) = reit may be considered as a smooth deformation,
or homotopy, of any one of these circles to any other giving rise to a homotopy of the
images H(t, r) = p(reit). It is our basic objective to understand these image curves

{p(reit) : 0 ≤ t ≤ 2π}
in the complex plane and determine which among them pass through the origin, or
at least that one of them must. There is, of course, the exceptional case p(z) = a2z
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in which there is a single root of multiplicity two at z = 0.
Let us say for a moment p(z) = z2 corresponding to the polynomial with real

coefficients plotted in the middle in Figure 1. Circles

γ(t) = reit

with radii j/16, j = 1, 2, 3, . . . , 28 are plotted on the left in Figure 2 along with the
image circles

p ◦ γ(t) = r2e2it

under the polynomial p.
Each image circle is covered twice. This can be more clearly seen if we plot the

image in the Riemann surface R for z2. We have done this is Figure 3
where R is represented by two planes each of which has a branch cut along the

negative real axis.

1 Preliminaries

The assumption that the polynomial p is of degree 2 or quadratic means the coefficient
a2 is nonzero. Thus, we can write

p(z) = a2[z
2 + (a1/a2)z + (a0/a2)]
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Figure 2: The mapping p(z) = z2. The root is at z = 0, so none of the image circles passes

through z2 = 0 in the image. In cases where there is a nonzero root, that root should lie

on a circle with center at z = 0 and the image curve should pass through p(z) = 0 in the

codomain.

where ã1 = a1/a2 and ã0 = a0/a2 are well-defined complex numbers. Recall that
multiplication by a nonzero complex number a2 corresponds to a rotation of C by an
angle Arg(a2) and a dilation of C by |a2| (in either order). Thus, the image of each
circle ∂Dr(0) under p(z) = a2z

2 + a1z + a0 is a fixed rotation/dilation of the image
of that circle under

p̃ = z2 + ã1z + ã0.

The same applies of course to the image of 0 ∈ C. In short, we may henceforth
consider the polynomial p(z) = z2 + a1z + a0 to be monic having leading coefficient
a2 = 1. We need only keep in mind that a final rotation may be necessary in order
to accurately represent the non-monic case. The rotation just discussed is illustrated
for a polynomial p(z) = a2z

2 in Figure 4.
To complete our preliminary considerations, we complete the square in the monic
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Figure 3: The mapping p : C → R by p(z) = z2. Here we have taken as codomain the

Riemann surface R with two sheets and a single branch point at z2 = 0.
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Figure 4: The mapping p : C → R by p(z) = a2z
2. Here we have taken a2 = eiπ/3. There

is no dilation, but only a rotation in the Riemann surface.
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polynomial:

p(z) =
(

z − a1
2

)2

+ a0 −
a21
4
. (1)

The quantity

b0 = a0 −
a21
4

=
4a0 − a21

4

contains the familiar descriminant a21 − 4a0. When a0 and a0 are real, the sign of
this quantity determines which of the cases in Figure 1 occurs. Naturally, when
a21 − 4a0 is complex there can be no distinguishing inequality determining the sign of
the quantity. Nevertheless, the condition b0 = 0 plays a natural role in distinguishing
cases. In particular, we note that when b0 = 0 there is a single (complex) root

z =
a1
2

of multiplicity two, and this root will be real precisely when a1 ∈ R which, by the
vanishing of b0, implies a0 = 0 as well. In view of this comment we should expect
something interesting to happen (more interesting than the cases considered in Fig-
ures 2-4) when there is a nonzero root of multiplicity two. Note that this feature
is absent from the illustration of Figure 1: The geometry of the illustration when
p(x) = x2 and when p(x) = (x− a1/2)

2 is essentially the same.
In view of the expression (1) we can also characterize the case of Figure 1 in which

there are two distinct real roots as corresponding to the case in which b0 is real and
nonzero and a1 is real. Thus, we will wish to pay specific attention to this case with
respect to Romik’s construction/illustration.

Naturally, we will also seek to distinguish (or see) the case when the roots are
distinct but complex conjugates. Here is an overall outline of the cases I plan to
consider.

Case 0 a0 = 0

Case 0.1 a0 = 0 = b0 (In this case a1 = 0, and I’ve already considered it
above.)

Case 0.2 a0 = 0, b0 6= 0 (In this case a1 6= 0.)

Case 1 b0 = 0

Case 2 b0 6= 0.

Notice thatCase 0.1 may be considered as a special case of, and included in, Case 1.
Similarly, Case 0.2 may be considered as a special case of, and included in, Case 2.
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2 A Real Root at z = 0

In Case 0.2 we may write

p(z) =
a21
4

[

(

2

a1
z + 1

)2

− 1

]

(2)

and isolate the interesting mapping

q(z) =

(

2

a1
z + 1

)2

= (c1z + 1)2 (3)

with c1 = 2/a1 6= 0. The mapping of circles under q turns out to be fundamental to
our objective in all cases, so we consider it in some detail here.

Noting that the rotation/dilation due to the factor a21/4 in (2) does not contribute
materially to the geometry, we can consider directly the image of Romik’s domain
circles under the mapping

φ(z) = (c1z + 1)2 − 1 = q(z)− 1.

Obviously, φ is simply a shift left by 1 of the image

q(∂Dr(0)) = {q(reit) : 0 ≤ t ≤ 2π}

determined by q, so we consider that image. Finally, the rotation/dilation associated
with multiplication by c1 in (3) maps a circle ∂Dr(0) to the circle ∂D|c1|r(0) in the
same family with the ordering of the radii preserved. As a consequence, it is natural to
consider, at least for the purposes of initial computation and illustration, the special
case c1 = |c1| ∈ R and q(z) = (|c1|z + 1)2.

Let us begin with a computation (assuming c1 = |c1| > 0):

q(reit) = (1 + |c1|reit)2

= 1 + 2|c1|reit + |c1|2r2e2it
= 1 + 2|c1|r cos t+ |c1|2r2 cos(2t) + i[2|c1|r sin t + |c1|2r2 sin(2t)].

At least three cases are worth distinguishing:

(i) r < 1/|c1|. In this case, the circle

C1(r) = {c1z + 1 : z ∈ ∂Dr(0)} (4)
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Figure 5: The image of a circle under q(z) = (c1z + 1)2. The domain on the left is not the

domain of the polynomial p = p(z), but rather the image of that domain under the affine

transformation w = c1z+1 where we have assumed c1 = |c1| > 0 and r < 1/|c1|. It may be

noted also that different scales are used in the w (complex) plane and the Riemann surface

R for w2 as can be seen from the relative size on w = 1 (on the left) compared to w2 = 1

(on the right). Finally, it should be noted that the image q(∂Dr(0)) shown here is not the

same as the image p(∂Dr(0)), but the image p(∂Dr(0)) is obtained by a left shift by 1 ∈ C.

Thus, the image p(∂Dr(0)) with r < 1/|c1| in Case 0.2 can never pass through p(z) = 0;

no circle ∂Dr(0) with r < 1/|c1| can contain a root of p.
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is a circle of radius |c1|r with center w = 1 entirely contained in the open right
half plane as indicated on the left in Figure 5. Consequently, the entire image
q(∂Dr(0)) lies in the first sheet of the Riemann surface R. Various properties
may be verified about the important image q(∂Dr(0)), and we will verify several
of them. It is easy to see immediately that in this particular case q(∂Dr(0)) is
a simple closed curve intersecting the real axis exactly twice in points x1(r) and
x2(r) satisfying

0 < x1(r) < 1 < x2(r).

The intersection of q(∂Dr(0)) with the real axis is, moreover, transverse and in
fact, the image curve intersects the real axis at right angles. It is also immediate
that x1(r) is a decreasing function of r for 0 < r < 1/|c1| with

lim
rր1/|c1|

x1(r) = 0,

and x2(r) is an increasing function of r on the same interval with

lim
rր1/|c1|

x2(r) = 4.

Naturally,
lim
rց0

xj(r) = 1 for j = 1, 2.

In particular, the simple closed curve q(∂Dr(0)) with r < 1/|c1| does not encircle
0 ∈ C. The simple closed curve p(∂Dr(0)) on the other hand always goes
around 0 ∈ C in Case 0.2(i) when r < 1/|c1|.

(ii) r = 1/|c1|. As indicated in Figure 6, the images q(∂Dr(0)) and p(∂Dr(0)) cease to
be smooth curves when r = 1/|c1| and the circle C1 defined in (4) passes through
the pre-image of the branch point in R. In this case, the non-conformality of
the square introduces a cusp into the image q(∂Dr(0)) at 0 ∈ R. Aside from the
appearance of this singularity, the image still retains many of the characteristics
described in the previous Case 0.2(i). In particular, q(∂Dr(0)) is a simple
closed curve which contains no points on the negative real axis: There is a cusp
point at x1 = 0 and a point x2 = 4 at which the curve crosses the positive real
axis at a right angle. The left translation p(∂Dr(0)) in the case r = 1/|c1| is
a simple closed curve around the origin, and there is no zero in ∂Dr(0) when
r = 1/|c1|. Also, the images q(∂Dr(0)) and p(∂Dr(0)) still lie in the first sheet
of R.
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Figure 6: The image of a circle of radius r = 1/|c1| under q(z) = (c1z+1)2. Still the image

p(∂Dr(0)) with r = 1/|c1| in Case 0.2(ii) does not pass through p(z) = 0; no circle ∂Dr(0)

with r = 1/|c1| can contain a root of p.

(iii) r > 1/|c1|. In this case, the circle C1 defined in (4) passes through the left half
plane, and the image q(∂Dr(0)) in R enters the second sheet of the Riemann
surface. The image q(∂Dr(0)) furthermore crosses the real axis four times at
three distinct points. There are two perpendicular crossings at

x1(r) = q ◦ γ(0) = q(r) = 1 + 2|c1|r + |c1|2r2 = (1 + |c1|r)2 > 1, and

x2(r) = q ◦ γ(π) = q(−r) = 1− 2|c1|r + |c1|r2 = (1− |c1|r)2 > 0.

We also have the inequality
x2(r) < x1(r),

and we note that 1− |c1|r < 0. The situation is illustrated in Figure 7. There
are also two crossings at the same point on the negative real axis corresponding
to the two points where C1 crosses the imaginary axis.
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Since r > 1/|c1|, it is easy to see x2(r) is increasing and satisfies

lim
rր∞

x2(r) = +∞.

Consequently, there is exactly one circle ∂Dr(0) with a point mapping under
q to w2 = 1 and hence containing the other root z = −a1 of the equation
p(z) = z(z + a1) = 0. It is easy enough to find the radius r > 1/|c1| and the
point w ∈ C1 corresponding to the root. We need in fact,

1− |c1|r = −1 or r =
2

|c1|
= |a1|.

For the actual root in ∂Dr(0) we need

c1z + 1 =
2

a1
z + 1 = −1 or z = −a1

as expected.

Figure 7: The image of a circle of radius r > 1/|c1| under q(z) = (c1z + 1)2. The image

q(∂Dr(0)) in Case 0.2(iii) may be viewed as consisting of two distinct loops in R both of

which enclose the branch point at 0 ∈ C; the larger loop (red) encircles also w2 = 1, but the

smaller loop may or may not encircle w2 = 1. Precisely one circle ∂Dr(0) with r > 1/|c1|
contains the other root of p. The figure on the right gives the projection of q(∂Dr(0)) in R
into C.

This is all straightforward, but the important and interesting aspect is seen in Fig-
ures 5-7. The polynomial q maps small circles (0 < r ≤ 1/|c1| = |a1|/2) to simple
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closed curves, and the translation to the left by 1 giving p according to (2) produces
curves encircling but not passing through the origin. For r > 1/|c1| = |a1|/2, the
quadratic polynomial q maps circles to curves consisting of two loops both of which
grow. The inner loop does not initially (for r close to 1/|c1| = |a1|/2) encircle the
origin, but the inner loops grow and eventually pass through the origin for r = |a1|
and then enclose the origin for r > 2/|c1| = |a1|.

A Visualization Problem

As we will see this deformation of a curve in the Riemann surface R starting from a
small simple closed curve near a point and developing a second loop (across the branch
point) which eventually crosses and encloses the origin may be viewed as the essential
behavior of a complex quadratic mapping. The appearance of the singularity leading
to the second loop strongly suggests a desingularization involving a space curve with
a vertical point with respect to projection; see Figure 8. It is also easy to produce a

Figure 8: The image of a circle of radius r = 1/|c1| under q(z) = (c1z+1)2. Here q(∂Dr(0))

in Case 0.2(ii) is a singular curve with a singularity at the branch point 0 ∈ R (first

sheet). Depicted also is a smooth regular curve in a three dimensional space determined by

a “visualization direction” v. The projection of the regular curve is the image q(∂Dr(0))

with a cusp.

family of regular curves in space in which the vertical point “twists” to form a loop
projecting to the inner loop of the images q(∂Dr(0)) for r > 1/|c1|.

There are various visualizations of the Riemann surface R as a singular surface
in R3, and it is usual for these visualizations that the sheets of the surface project
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orthogonally onto C. It is not usual that a non-singular regular curve with a vertical
point like that depicted in Figure 8 can lie within the surface representing R. For one
thing, such surfaces usually have a conical character locally at the branch point. One
can imagine and alternative visualization surface with a “spread out” branch point
so that the surface is helicoidal along a “branch axis.” Such a surface can admit
a curve with a vertical point at the branch, but it is not (at all) clear that such a
surface can admit a curve that “twists” as required to desingularize the homotopy in
question. Furthermore, the models of the Riemann surface R in R

3 all have either
self-intersections or identified cuts.

What might be really nice is to give a surface in four dimensionas (or possibly
more) in which the two sheets of the Riemann surfaceR do not self-intersect and come
together naturally at the branch point 0 ∈ C. This is definitely possible. One would
like to arrange such a singular surface, furthermore, so that it admits the homotopy
determined by q on the Romik circles in such a way that each image q(∂Dr(0)) is a
regular curve projecting, say with respect to some particular visualization direction
v ∈ R4 into a (complex) plane giving the image curves we have plotted in Figures 5-7.
I do not know if this is possible.

3 Repeated Roots

Here we consider Case 1 when

b0 = a0 −
a21
4

= 0

and there is a single root of multiplicity two given by z = a1/2 6= 0. The equation is
trivial to solve, as may even be asserted concerning quadratic equations in all cases,
but of course our objective is to see something new and fundamental in the illustration
resulting from the Romik construction. We may assume we are in the complement of
Case 0.1, so that a0 ∈ C\{0} and consequently a1 ∈ C\{0} as well. We write then

p(z) =
(

z +
a1
2

)2

=
a21
4

(

2

a1
z + 1

)2

=
a21
4
q(z).

Consequently, we see that up to a rotation, the image of p is given by the image of
q, which we have just analyzed in the previous section. We are interested then in the
condition

0 ∈ q(∂Dr(0)),
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and we know this happens exactly once in the case r = 1/|c1| = |a1|/2 corresponding
to the single root z = a1/2.

4 Distinct Roots

Here we consider Case 2 in which

b0 = a0 −
a1
4

∈ C\{0}.

We may assume also that we are in the complement of Case 0.2 discussed above so
that a0 ∈ C\{0}, but it may be the case that a1 = 0. In fact, we consider subcases:

Case 2a b0 6= 0, but a1 = 0.

In this case, we may dispense with b0 and write simply

p(z) = z2 + a0

where a0 = b0 6= 0. The image p(∂Dr(0)) is always a (double covered) circle of radius
r2 and center a0. Let us say a0 is in the first quadrant in R as indicated in Figure 9.
Then −a0 is in the third quadrant, and the principal square root of −a0 is in the
fourth quadrant and is a root. The other root is −√−a0.

Case 2b b0 6= 0 and a1 6= 0.

Here we write

p(z) =
a21
4

[

(

2

a1
z + 1

)2

+
4b0
a21

]

Ignoring the preliminary dilation/rotation due to the factor c1 = 2/a1, we understand
the mapping q(z) = (c1z + 1)2 in terms of its image in the Riemann surface R: For
small r the image q(∂Dr(0)) is a (small) simple closed curve encircling q(0) = 1. As
r increases a cusp develops in the image curve at w2 = 0 corresponding to r = 1/|c1|.
For r > 1/|c1| a singular loop in the first sheet of R grows and is joined by a second
inner loop in the second sheet of R which also grows. We need now to examine more
closely the nature of this growth.
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Figure 9: Case 2a Mapping of the polynomial p(z) = z2−a0. In this particular illustration

we have take a0 = 1 + i and the scales in the domain and codomain match.

Note that the entire image is subjected here to a nontrivial translation by the
quantity 4b0/a

2
1 ∈ C\{0}. The point corresponding to the point q(0) = 1 which the

initial loops for r < 1/|c1| encircle is

4b0
a21

+ 1 =
4a0
a21

∈ C\{0}.

Recall that in the complement of Case 0.2 we have a0 6= 0.
We consider therefore the homotopy

α(t) = α(t; r) = q(reit) +
4b0
a21

= (1 + |c1|reit)2 − 1 +
4a0
a21
. (5)

Expanding Radial Loops

In view of the expression (5) we see that our (geometric) understanding of quadratic
equations with complex coefficients in terms of complex mappings will be complete
if we understand the homotopy

h(t, r) =
(

|c1|reit + 1
)2 − 1 (6)
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first considered in Section 2 above. This will take a substantial investment, but
hopefully the resulting “big picture” concerning the roots of quadratic equations will
be worth it.

Some terminology will be useful. We wish to generalize in various ways the ex-
ample of an expanding circle H0 : [0, 2π]× [0,∞) → C given by

H0(θ, r) = P + reiθ.

We considered various expanding circles with center P = 0 in the discussion of p(z) =
z2 in the introduction, and we considered an example with center P = a0 6= 0 in the
discussion of Case 2a above for p(z)z2 + a0.

It will be convenient to consider 2π periodic functions f : R → C on a represen-
tative interval I of length 2π. As a convention, when we write f : I → C and say
f is periodic with period 2π, we have in mind the 2π periodic extension of f to the
domain R. In such a case, we can freely change the representative interval I and
consider, for example, f : [0, 2π] → C or f : [−π, π] → C. More generally, we will
consider homotopies similar to H0 above that are 2π periodic in one variable and use
the same convention.

Let us define an expanding radial loop with expansion center P ∈ C to be
a continuous homotopy H : [0, 2π]× [0,∞) → C of the form

H(θ, s) = P +R(θ, s)eiθ

with the following properties:

1. R : [0, 2π]× [0,∞) → [0,∞) is continuous.

2. R is 2π periodic in θ.

3. R(θ, 0) = 0 and R is (strictly) increasing in s.

For s > 0 fixed
Γs = {H(θ, s) : 0 ≤ θ ≤ 2π} (7)

is a simple closed curve. Our designation as these curves as radial loops has the
same meaning as “star shaped” in other contexts. Each image curve Γs for s > 0 is
the boundary of a star shaped domain

Ωs = {z ∈ C : |z − P | < R(Arg(z − P ), s)} (8)
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An expanding radial loop H is said to have an eventual center at Q ∈ C if for
some T0 > 0 there is a continuous homotopy G : [0, 2π]× [T0,∞) → C of the form

G(θ, t) = Q+M(θ, t)eiθ

with the following properties:

1. M : [0, 2π]× [T0,∞) → [0,∞) is continuous.

2. M is 2π periodic in θ.

3. M(θ, T0) > 0 and M is (strictly) increasing in t,

and for some S0 > 0 the following hold:

(i) There is a continuous one-to-one (strictly) increasing function τ : [S0,∞) →
[T0,∞),

(ii) There is a continuous function ψ : [0, 2π] × [S0,∞) → R such that for fixed
s ≥ S0

(a) ψ = ψ(θ, s) is (strictly) increasing and periodic of period 2π in θ and

(b) {ψ(θ, s) : 0 ≤ θ ≤ 2π} is an interval of length 2π.

(iii) For s ≥ S0 we have H(θ, s) = G(ψ(θ, s), τ(s)) so that in particular

Γs = {H(θ, s) : 0 ≤ θ ≤ 2π} = {G(θ, τ(s)) : 0 ≤ θ ≤ 2π}. (9)

We wish to apply this terminology and these definitions to the homotopy given in
(6). It will also be convenient sometimes to write ρ = |c1|r > 0 so that

h(t) = h(t, r) = (ρeit + 1)2 − 1.

Lemma 1 For 0 < r < 1/|c1|, i.e., ρ < 1

{(ρeit + 1)2 − 1 : −π ≤ t ≤ π}
is a smooth simple closed curve, and there is a function H : [−π, π] × [0, 1) → C of
the form

H(θ, ρ) = R(θ, ρ)eiθ

such that for 0 ≤ ρ ≤ 1

{(ρeit + 1)2 − 1 : −π ≤ t ≤ π} = {R(θ, ρ)eiθ : −π ≤ θ ≤ π}.
More precisely, there are continuous functions R : [−π, π] × [0, 1] → [0,∞) and
ψ : [−π, π]× (0, 1] → R with
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(i) R = R(θ, ρ) is even in θ (for fixed ρ), strictly increasing in ρ (for fixed θ) and
R(θ, 0) ≡ 0. In fact, R = R(θ, ρ) is smooth for 0 < ρ < 1 and

∂

∂R
(θ, ρ) > 0.

(ii) ψ = ψ(θ, ρ) is (strictly) increasing, odd, and 2π periodic in θ for ρ > 0 fixed with
ψ(0, ρ) = 0 and ψ(±π, ρ) = ±π.

(iii) For 0 ≤ ρ ≤ 1 we have
h(θ, ρ) = H(ψ(θ, ρ), ρ),

that is
(

ρeit + 1
)2 − 1 = R(ψ(t), ρ)eiψ(t). (10)

We wish to extend the homotopy H in the lemma above to a full expanding radial
loop. We also wish to obtain some more detailed information about the geometry of
the loops themselves.

Lemma 2 Let H be the homotopy defined in Lemma 1. For 0 < ρ ≤ 1/2,

Γρ = {H(θ, ρ) : −π ≤ θ ≤ π}

is a smooth convex curve with

∂

∂θ
R(θ, ρ) < 0 for 0 < θ < π. (11)

For 1/2 < ρ < 1 the inequality (11) still holds and

Γρ = {H(θ, ρ) : −π ≤ θ ≤ π}

is a smooth curve which is not convex. In this case ImH(θ, ρ) satisfies

(i) ImH(0, ρ) = ImH(±π, ρ) = 0 and

(ii) ImH(θ, ρ) increases for 0 < θ < θmax to a positive maximum ImH(θmax, ρ) for
some θmax ∈ (0, π) and then decreases for θmax < θ < π.

The behavior just described for ImH(θ, ρ) holds also for 0 < ρ ≤ 1/2. For 1/2 < ρ <
1, however, the real part ReH(θ, ρ) satisfies the following:

(i) ReH(0, ρ) = ρ(ρ+ 2), ReH(±π, ρ) = ρ(ρ− 2) < 0 and
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(ii) ReH(θ, ρ) decreases for 0 < θ < θ1 to a negative minimum ReH(θ1, ρ) < ρ(ρ−2)
for some θ1 ∈ (θmax, π) and then increases for θ1 < θ < π.

Lemma 3 Let H be the homotopy defined in Lemma 1. For ρ = 1,

Γ1 = {H(θ, 1) : −π ≤ θ ≤ π}

is a singular nonconvex curve with a cusp at θ = ±π. The curve is smooth elsewhere,
and it is still true that

∂

∂θ
R(θ, 1) < 0 for 0 < θ < π.

ImH(θ, 1) satisfies

(i) ImH(0, 1) = ImH(±π, 1) = 0 and

(ii) ImH(θ, 1) increases for 0 < θ < θmax to a positive maximum ImH(θmax, 1) for
some θmax ∈ (0, π) and then decreases for θmax < θ < π.

ReH(θ, ρ) satisfies

(i) ReH(0, 1) = 3, ReH(±π, 1) = −1 and

(ii) ReH(θ, 1) decreases for 0 < θ < θ1 to a negative minimum ReH(θ1, 1) < −1 for
some θ1 ∈ (θmax, π) and then increases for θ1 < θ < π.

Lemma 4 For ρ > 1, the condition ρ cos θ = −1 determines a unique angle θmin ∈
(π/2, π) for which. . .

ψ : [−θmin, θmin]× (1,∞) → [−π, π],

and we use the same formula (10) obtaining a homotopy H : [−π, π]× (1,∞) → C.

Theorem 1 Concatenating the homotopies H is Lemmas 1-4 we obtain an expanding
radial loop with center P = 0 ∈ C.
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The Final Case

For r very small then, we consider the expressions

α(t) = q(reit) +
4b0
a21

= (1 + |c1|reit)2 − 1 +
4a0
a21

(12)

and

α0(t) = 2|c1|reit +
4a0
a21
. (13)

The first expression (12) may be written as

α(t) = 2|c1|r cos t + |c1|2r2 cos(2t) + i[2|c1|r sin t+ |c1|2r2 sin(2t)] +
4a0
a21
.

The expression (13) is a parameterization of a circle with radius 2|c1|r and center
4a0/a

2
1 ∈ C\{0}. We note also that

α′(t) = 2(1 + |c1|reit)|c1|r ieit
= −2|c1|r sin t− 2|c1|2r2 sin(2t) + i[2|c1|r cos t + 2|c1|2r2 cos(2t)]
= 2|c1|r (− sin t− |c1|r sin(2t) + i[cos t + |c1|r cos(2t)]) ,

while
α′
0 = 2|c1|r (− sin t+ i cos t) .

Using these calculations we estimate

|α− α0|+ |α′ − α′
0| = |c1|2r2 + 2|c1|2r2 = 3|c1|2r2.

We conclude that α converges to α0 uniformly in C1[0, 2π] as a smooth parameterized
simple closed curve as r ց 0. In particular, none of the small curves p(∂Dr(0)) pass
through 0 ∈ C.

We would like somewhat different information about the deforming curves p(∂Dr(0))
applying to the entire interval 0 < r ≤ 1/|c1|. Our objective is to express each of
these curves in “polar coordinates” with respect to the center 4b0/a

2
1. To this end,

we consider for −π ≤ t ≤ π the expression

α(t)− 4a0
a21

= (1 + |c1|reit)2 − 1.

For 0 ≤ t ≤ π, we have

Re[α(t)− 4a0/a
2
1] = 2|c1|r cos t+ |c1|2r2 cos(2t) = |c1|r[2 cos t+ |c1|r cos(2t)].
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We can also write

2 cos t+ |c1|r cos(2t) = 2|c1|r cos2 t + 2 cos t− |c1|r

= |c1|r
[

2

(

cos t+
1

2|c1|r

)2

− 1

2|c1|2r2
− 1

]

.

Given that cos t decreases for 0 ≤ t ≤ π from cos 0 = 1 to cosπ = −1 and 0 <
2|c1|r < 2 we know the value

cos t+
1

2|c1|r
decreases from 1 +

1

2|c1|r
>

1

2
to − 1 +

1

2|c1|r
> −1

2

on the interval 0 ≤ t ≤ π. There are two possibilites: If r ≤ 1/(2|c1|) = |a1|/4, then
2 cos t + |c1|r cos(2t) decreases from |c1|r + 2 > 2 to |c1|r − 2 ≤ −3/2 determining a
unique value t∗ with 0 < t∗ < π and

2 cos t∗ + |c1|r cos(2t∗) = 0.

If r > 1/(2|c1|) = |a1|/4, then there is a value t0 with π/2 < t0 < π satisfying

cos t1 = − 1

2|c1|r
and for which the following holds:

(

cos t+
1

2|c1|r

)2

decreases from

(

1 +
1

2|c1|r

)2

> 0 to 0

on the interval 0 ≤ t < t1 and
(

cos t+
1

2|c1|r

)2

increases from 0 to

(

−1 +
1

2|c1|r

)2

> 0.

In this case 2 cos t+ |c1|r cos(2t) decreases from |c1|r + 2 > 2 to

2 cos t1 + |c1|r cos(2t1) = |c1|r
[

− 1

2|c1|2r2
− 1

]

= −
(

1

2|c1|r
+ |c1|r

)

< 0

on the interval 0 ≤ t < t1 determining a unique value t∗ with 0 < t∗ < t1 and

2 cos t∗ + |c1|r cos(2t∗) = 0.

For t1 ≤ t ≤ π
|c1|r − 2 ≤ −3/2 determining a unique value t∗ with 0 < t < π and

2 cos t∗ + |c1|r cos(2t∗) = 0.
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5 Summary

We have obtained five distinct cases/pictures.

5.1 Single Root at 0 ∈ C

5.2 Single Root in C\{0}
This case is represented by the single root of w(ζ) = (ζ + 1)2 at ζ = −1.

5.3 Distinct Roots 0 ∈ C and z ∈ C\{0}
5.4 Distinct Roots ±z ∈ C\{0} (balanced)

5.5 Distinct Roots z1, z2 ∈ C\{0} with z2 6= −z1
(nonzero and unbalanced)
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