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Consider a holomorphic function f : Ω → C defined on an open set Ω ⊂ C.

Theorem 1 If α0 and α1 are homotopic1 in Ω, then

∫
α1

f =

∫
α0

f.

Figure 1: Homotopic curves within a domain of holomorphicity.

I first read about this result in Serge Lang’s book on complex analysis. I went through
(and reconstructed) the proof in detail feeling that Lang, as is his usual practice, had
given a nice suggestion of how the proof went without quite giving “adequate” detail.
He certainly didn’t give all the details. I remember feeling that my proof was rather

1By homotopic here, we mean “fixed endpoint” homotopic in Ω; this will be reviewed/clarified
below.
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too complicated, partially simply because it was a kind of technically difficult result
to prove. Now I see the result appears as Theorem 5.1 of Chapter 3 in Stein and
Shakarchi’s book on complex analysis. I also feel the proof given there is a little bit
lacking, so I will try again to give a complete proof. Hopefully, I will be more satisfied
than I was with my last attempt.

1 Set up

We have a homotopy H : [a, b] × [0, 1] → Ω where we assume both paths α0 and α1

have domain the interval [a, b] and the following hold:

H(t, 0) ≡ α0(t),

H(t, 1) ≡ α1(t),

H(a, τ) ≡ α0(a) = α1(a), and

H(b, τ) ≡ α0(b) = α1(b).

We note also that

K = H ([a, b]× [0, 1]) = {H(t, τ) : a ≤ t ≤ b, 0 ≤ τ ≤ 1}⊂⊂Ω

where in this case “⊂⊂” means “is a compact set compactly contained in” the open
set Ω. Finally, the homotopy H is uniformly continuous on the compact set K0 =
[a, b] × [0, 1]. These are the basic ingredients in the proof, and they are relatively
simple. The rest involves, to a certain extent, technicalities. Note that

dist(K, ∂Ω) > 0.

Thus, we can fix a positive number r with

r < dist(K, ∂Ω).

We will “grid up” or partition the rectangle K0 based on partitions

a = a0 < a1 < a2 < · · · < an = b and

0 = σ9 < σ1 < σ2 < · · · < σm = 1

with

aj − aj−1 =
b− a

n
for j = 1, 2, . . . , n and

σk − σk−1 =
1

m
for k = 1, 2, . . . , m.
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Figure 2: Partition of the rectangular domain of H (left) and a subrectangle along the

bottom edge (right). The interval Ij is the domain of βj and β̂j which may be thought of

as defined on the bottom and top of the subrectangle respectively.

.
The basic idea is the following: For each k = 0, 1, 2, . . . , m, we consider the path

γk : [a, b] → Ω by
γk(t) = H(t, σk).

Then we have γ0 = α0 and γm = α1. Notice that each γk for 0 < k < m parameterizes
a path connecting α0(a) to α0(b) in K ⊂ Ω. We may consider the dashed curves in
Figure 1 as illustrations of these paths. We will show (when we take the partition
rectangles small enough) that

∫
α0

f =

∫
γ0

f =

∫
γ1

f =

∫
γ2

f = · · · =
∫
γm

f =

∫
α1

f.

This will complete the proof.

2 Partition rectangles

By the uniform continuity of H , there is some δ > 0 for which

|(t, τ)− (t0, τ0)| < δ =⇒ |H(t, τ)−H(t0, τ0)| <
r

2

for any points (t, τ) and (t0, τ0) in K0. With this in mind, we choose m and n large
enough so that

b− a

n
<

δ√
2

and
1

m
<

δ√
2
.
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This has the consequence that each subrectangle [aj−1, aj] × [σk−1, σk] has diameter
less than δ for j = 1, 2, . . . , n and k = 1, 2, . . . , m. Consequently, each of these
subrectangles has image in the disk

Dr/2(pjk) where pjk = H(aj−1, σk−1)

is the image of the lower left corner.
This completes the basic set up. We need to use it to prove

∫
γk−1

f =

∫
γk

f for k = 1, 2, . . . , m.

3 Comparing integrals

This is where things get a bit complicated, and it’s also where a main element of the
proof arises. Let us set up that main element first:

Theorem 2 (Cauchy’s theorem in a disk) If Dr(z0)⊂⊂Ω, then f has a primitive in
Dr(z0), that is, there is a holomorphic function g : Dr(z0) → C such that g′ = f on
Dr(z0) and ∫

β

f = g(β(b))− g(β(a))

for any path in Dr(z0) parameterized by β. In particular,

∫
α

f = 0

for any loop in Dr(z0) parameterized by α.

We apply this in disks with the radius r < dist(K, ∂Ω) mentioned above and centers
determined by the partition values a = a0 < a1 < a2 < · · · < an = b. More precisely,
let’s start with the path α0 : [a, b] → Ω for which

α0(t) = H(t, 0) = H(t, σ0).

Let us consider α0, furthermore, as a concatenation of paths β1, β2, . . . , βn with

βj : Ij = [aj−1, aj ] → Ω by βj(t) = α0(t) = H(t, 0).
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We consider also the “next” path γ1 : [a, b] → Ω by

γ1(t) = H(t, σ1)

as a concatenation of paths β̂1, β̂2, . . . , β̂n with

β̂j : Ij = [aj−1, aj] → Ω by β̂j(t) = γ1(t) = H(t, σ1).

Figure 3: Image curves determined by a subrectangle on the bottom edge of the partiation.

The image corresponding to the first subrectangle [a, a1]× [0, σ1] is illustrated on the left,

and intermediate subrectangle as shown in Figure 2 in the middle, and the last subrectangle

[an−1, b]× [0, σ1] on the right. We have suppressed the index on β̂ = β̂j in this illustration,

taking β̂ globally as another name for γ1.

We begin by considering the lower left subrectangle [a, a1]× [0, σ1] whose image is
illustrated on the left in Figure 3. Since this image lies entirely in Dr(α0(a)) where
there is a primitive g1 of f defined we can write

∫
β̂1

f −
∫
β1

f = g1(β̂(a1))− g1(β̂(a))− [g1(α0(a1))− g1(α1(a))]

= g1(β̂(a1))− g1(α0(a1)) (1)

since at the left endpoints we have H(a, τ) ≡ β̂a = α0(a).
We consider the next difference of integrals

∫
β̂2

f −
∫
β2

f
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in reference to the middle illustration of Figure 3 where a primitive g2 is defined on
Dr(α0(a1)). We find then

∫
β̂2

f −
∫
β2

f = g2(β̂2(a2))− g2(β̂2(a1))− [g2(α0(a2))− g2(α0(a1))].

Since the primitives g1 and g2 are both defined on the intersection Dr(α0(a)) ∩
Dr(α0(a1)) contining both points β̂1(a1) = β̂1(a1) and α0(a1) and satisfying there
g′2 = g′1 = f , we conclude there is a constant c1 ∈ C such that g2 = g1 + c+ 1 on the
common domain, and we find

2∑
j=1

∫
β̂j

f −
2∑

j=1

∫
βj

f = g1(β̂1(a1))− g1(α0(a1)) + g2(β̂2(a2))− g1(β̂2(a1))− c1

− [g2(α0(a2))− g1(α0(a1))− c1]

= g2(β̂2(a2))− g2(α0(a2)).

Taking the primitive g3 on Dr(α0(a2)) and repeating the same argument we obtian

∫
β̂3

f −
∫
β3

f = g3(β̂3(a3))− g3(β̂3(a2))− [g3(α0(a3))− g3(α0(a2))].

Summing the differences again and taking account of the existence of a constant c2
for which g3 = g2 + c2, we have

3∑
j=1

∫
β̂j

f −
3∑

j=1

∫
βj

f = g3(β̂3(a3))− g3(α0(a3)).

This kind of expression persists until

n∑
j=1

∫
β̂j

f −
n∑

j=1

∫
βj

f = gn(β̂n(b))− gn(α0(b)). (2)

At this point, we see as illustrated on the right in Figure 3 that β̂n(b) = α0(b) so that
the right side of (2) vanishes, and the left side is

∫
γ1

f −
∫
α0

f = 0.
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Thus, we have completed the first step having verified∫
α0

f =

∫
γ0

f =

∫
γ1

f.

Each step showing ∫
γk

f =

∫
γk−1

f for k = 2, 3, . . . , n

is substantially the same as what we have done above leading inductively to the
conclusion ∫

α0

f =

∫
γn

f =

∫
α1

f

as asserted in Lang’s theorem. Partially for the sake of completeness and partially as
a review of the argument presented above, we include the details in the general case
below.

4 The general step

Here we attempt to show ∫
γk

f =

∫
γk−1

f.

The details differ from those of the first step above primarily in terms of notation and
especially the subscripts associated with the concatenated curves βj and β̂j associated
with γk and γk+1 respectively. With appropriate changes of labeling, the illustrations
of Figure 3 are still applicable. We have indicated the changes of labeling in Figure 4
with reference to the middle illustration of Figure 3. The modifications required to
properly represent the beginning and ending illustrations on the left and right of Fig-
ure 3 in the general case are relatively easily obtained by drawing together/collapsing
appropriate points.

We also emphasize below the transition involved in the addition/inclusion of the
integrals ∫

βj+1

f and

∫
β̂j+1

f,

and with reference to this we have illustrated in Figure 4 the (four) disks of radius
r and r/2 with centers at both βj(aj−1) = γk−1(aj−1) and βj+1(aj) = γk−1(aj). The
details are as follows:
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Figure 4: Image curves determined by a subrectangle on the bottom edge of the partiation.

Starting with the disk Dr(γk−1(a)) = Dr(β1(a)) we have a primitive g1 of f . Due
to the uniform continuity assertion and the fineness of the rectangular grid the entire
image of the subrectangle [a, a1] × [σk−1, σk] under H lies in Dr/2(β1(a)). We have
then, precisely as in (1)

∫
β̂1

f −
∫
β1

f = g1(β̂1(a1))− g1(β̂1(a))− [g1(β1(a1))− g1(β1(a))]

= g1(β̂1(a1))− g1(β1(a1)) (3)

since H(a, τ) ≡ β̂1(a) = β1(a).
We then consider the next difference of integrals

∫
β̂2

f −
∫
β2

f.

Much as before there exists a primitive g2 on Dr(β2(a1)) so that

∫
β̂2

f −
∫
β2

f = g2(β̂2(a2))− g2(β̂2(a1))− [g2(β2(a2))− g2(β2(a1))].
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Noting that

β2(a1) = β1(a1) = γk−1(a1) and β̂2(a1) = β̂1(a1) = γk(a1)

the difference can be rewritten as∫
β̂2

f −
∫
β2

f = g2(β̂2(a2))− g2(β̂1(a1))− [g2(β2(a2))− g2(β1(a1))].

Since β1(a1) = γk−1(a1) is also the center of the (next) disk Dr(β2(a1)), the uniform
continuity assertion and the fineness of the grid also implies the entire image of the
first subrectangle [a, a1] × [σk−1, σk] under H lies also in Dr/2(β2(a1)). In particular
this image

{H(t, τ) : a ≤ t ≤ a1, σk−1 ≤ τ ≤ σk}
lies in the intersectionDr/2(β1(a))∩Dr/2(β2(a1)) and also in the intersectionDr(β1(a))∩
Dr(β2(a1)) where both g1 and g2 are defined with g′1 = g′2 = f . We conclude there
exists a constant c1 ∈ C for which g2 = g1 + c1 on this intersection. In particular, at
the points β1(a1) = β2(a1) and β̂1(a1) = β̂2(a1) we can write

g2(β1(a1)) = g1(β1(a1)) + c1 and g2(β̂1(a1)) = g1(β̂1(a1)) + c1.

Substituting these values we find

∫
β̂2

f −
∫
β2

f = g2(β̂2(a2))− g1(β̂1(a1))− c1

− [g2(β2(a2))− g1(β1(a1))− c1]

= g2(β̂2(a2))− g2(β2(a2))− [g1(β̂1(a1))− g1(β1(a1))].

From this, we may conclude much as in the initial case

2∑
j=1

∫
β̂j

f −
2∑

j=1

∫
βj

f = g2(β̂2(a2))− g2(β2(a2)).

As before, the same approach applies to

∫
β̂3

f −
∫
β3

f = g3(β̂3(a3))− g3(β̂3(a2))− [g3(β3(a3))− g3(β3(a2))]

9



using the primitive g3 on Dr(β3(a2)) = Dr(β2(a2)). We conclude

3∑
j=1

∫
β̂j

f −
3∑

j=1

∫
βj

f = g3(β̂3(a3))− g3(β3(a3))

and
ℓ∑

j=1

∫
β̂j

f −
ℓ∑

j=1

∫
βj

f = gℓ(β̂ℓ(b))− gℓ(βℓ(b)) (4)

for ℓ = 2, 3, . . . , n. Taking (4) with ℓ = n gives

∫
γk

f −
∫
γk−1

f = gn(γk(b))− gn(γk−1(b)) = 0

since
H(b, τ) ≡ β̂n(b) = γk−1(b) = γk(b) = βn(b).
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