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Consider a holomorphic function f : {2 — C defined on an open set €2 C C.

Theorem 1 If oy and oy are homotopic' in ), then
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Figure 1: Homotopic curves within a domain of holomorphicity.

I first read about this result in Serge Lang’s book on complex analysis. I went through
(and reconstructed) the proof in detail feeling that Lang, as is his usual practice, had
given a nice suggestion of how the proof went without quite giving “adequate” detail.
He certainly didn’t give all the details. I remember feeling that my proof was rather

!By homotopic here, we mean “fixed endpoint” homotopic in €; this will be reviewed/clarified
below.



too complicated, partially simply because it was a kind of technically difficult result
to prove. Now I see the result appears as Theorem 5.1 of Chapter 3 in Stein and
Shakarchi’s book on complex analysis. I also feel the proof given there is a little bit
lacking, so I will try again to give a complete proof. Hopefully, I will be more satisfied
than I was with my last attempt.

1 Set up

We have a homotopy H : [a,b] x [0,1] — © where we assume both paths «y and a4
have domain the interval [a,b] and the following hold:

H(ta O) — aO(t)>

H(t, 1) = ay(t),

H(a,7) = ag(a) = ay(a), and
H(b,7) = ap(b) = ay(b)

We note also that
K =H (Ja,b] x [0,1])) ={H(t,7):a <t <b, 0<7<1}CCQ

where in this case “CC” means “is a compact set compactly contained in” the open
set (). Finally, the homotopy H is uniformly continuous on the compact set Ky =
la,b] x [0,1]. These are the basic ingredients in the proof, and they are relatively
simple. The rest involves, to a certain extent, technicalities. Note that

dist (K, 092) > 0.

Thus, we can fix a positive number r with

r < dist(K, 092).

We will “grid up” or partition the rectangle K, based on partitions
a=aqy<a; <ay<---<a,=>band
O=09g<o01 <0< - <0o,=1

with

b—a

a; — aj_1 = for j=1,2,...,n and

1
op —0p_1=—fork=1,2,....,m.
m
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Figure 2: Partition of the rectangular domain of H (left) and a subrectangle along the
bottom edge (right). The interval I; is the domain of 8; and 3; which may be thought of
as defined on the bottom and top of the subrectangle respectively.

The basic idea is the following: For each k = 0,1,2,...,m, we consider the path
Yk ¢ [a, b] = Q by
’yk(t) = H(t, O'k).
Then we have vy = ag and 7,, = ;. Notice that each 7, for 0 < k < m parameterizes
a path connecting ag(a) to ag(b) in K C Q. We may consider the dashed curves in
Figure 1 as illustrations of these paths. We will show (when we take the partition
rectangles small enough) that

L= L= o= fr=m 1=

This will complete the proof.

2 Partition rectangles
By the uniform continuity of H, there is some § > 0 for which

r
|(t,7) — (to,70)| <9 = |H (t,7) — H(to,70)| < 3
for any points (¢,7) and (to, 79) in Ky. With this in mind, we choose m and n large
enough so that
b—a
n

and <

<

ks

1
m

Sl



This has the consequence that each subrectangle [a;_1, a;| X [04_1, 0] has diameter
less than 6 for j = 1,2,...,n and &k = 1,2,...,m. Consequently, each of these
subrectangles has image in the disk

Dr,-/Q(Z)jk) where pjk = H(aj_l, Uk—l)

is the image of the lower left corner.
This completes the basic set up. We need to use it to prove

/ f:/f for k=1,2,...,m.
Vk—1 Yk

3 Comparing integrals

This is where things get a bit complicated, and it’s also where a main element of the
proof arises. Let us set up that main element first:

Theorem 2 (Cauchy’s theorem in a disk) If D,(z9) CC 2, then f has a primitive in
D,(zy), that is, there is a holomorphic function g : D,(z9) — C such that ¢’ = f on
D,(z) and

/B f = g(B0) - 9(8(a))

for any path in D,.(zy) parameterized by 5. In particular,

fr-

for any loop in D,(zy) parameterized by c.

We apply this in disks with the radius r < dist(K, 92) mentioned above and centers
determined by the partition values a = ag < a; < as < --- < a, = b. More precisely,
let’s start with the path oy : [a, b] — Q for which

ap(t) = H(t,0) = H(t,09).
Let us consider «q, furthermore, as a concatenation of paths 1, 5, ..., 3, with

5]' . Ij = [aj_l,aj] — 0 by 5J(t) = Oé()(t) = H(t,O)



We consider also the “next” path v; : [a,b] — Q by
Yi(t) = H(t,01)

as a concatenation of paths Bl, Bg, ceey Bn with

Bj I = laj_1,a5] = Qby B(t) = n(t) = H(t,01).

Figure 3: Image curves determined by a subrectangle on the bottom edge of the partiation.
The image corresponding to the first subrectangle [a,a;] x [0, 0] is illustrated on the left,
and intermediate subrectangle as shown in Figure 2 in the middle, and the last subrectangle
[an—1,b] % [0,01] on the right. We have suppressed the index on B = ﬁj in this illustration,
taking ﬁ globally as another name for ~;.

We begin by considering the lower left subrectangle [a, a1] x [0, o1] whose image is
illustrated on the left in Figure 3. Since this image lies entirely in D,.(ag(a)) where
there is a primitive ¢g; of f defined we can write

/ f= ; f = 91(B(a1)) = 91(5(a)) — [g1(ewo(a1)) — g1(en(a))]

= g1(B(a1)) — g1(ao(ar)) (1)

~

since at the left endpoints we have H(a,T) = fa = op(a).
We consider the next difference of integrals

[0
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in reference to the middle illustration of Figure 3 where a primitive g is defined on
D,(ap(ay)). We find then

/ = , f = g2(Balaz)) — g2(Balar)) — [g2(c0(az)) — ga(ev(ar))].

Since the primitives g; and go are both defined on the intersection D, (ag(a)) N
D, (ap(ar)) contining both points fi(a1) = fi(a1) and ag(a;) and satisfying there
g5 = g} = f, we conclude there is a constant ¢; € C such that go = g1 + ¢+ 1 on the
common domain, and we find

Z/ f— Z f = g1(B1(a1)) — gi(ao(ar)) + 92(52(02)) - 91(32(611)) — G

— [g2(a0(az)) — g1(an(ar)) — e
= g2(Bo(az)) — ga(ao(az)).

Taking the primitive g3 on D,(a(az)) and repeating the same argument we obtian

/B' = [ = 93(33@3)) - 93(33(%)) — [g3(an(as)) — gs(ao(az))]-

B3

Summing the differences again and taking account of the existence of a constant cy
for which g3 = g2 + c2, we have

/ f- Z 7= slfsfas) = gfaatos).
This kind of expression persists until
/ ;- Z 7= (B0~ g0l 2)

At this point, we see as illustrated on the right in Figure 3 that £,(b) = ag(b) so that
the right side of (2) vanishes, and the left side is

/%f_/aof:o.



Thus, we have completed the first step having verified

/aofz/wfzfmf.
/fz/f for k=23 .n

is substantially the same as what we have done above leading inductively to the

conclusion
fo=] =1

as asserted in Lang’s theorem. Partially for the sake of completeness and partially as
a review of the argument presented above, we include the details in the general case
below.

Each step showing

4 The general step

Here we attempt to show

=]

The details differ from those of the first step above primarily in terms of notation and
especially the subscripts associated with the concatenated curves ; and Bj associated
with v and 7,4 respectively. With appropriate changes of labeling, the illustrations
of Figure 3 are still applicable. We have indicated the changes of labeling in Figure 4
with reference to the middle illustration of Figure 3. The modifications required to
properly represent the beginning and ending illustrations on the left and right of Fig-
ure 3 in the general case are relatively easily obtained by drawing together /collapsing
appropriate points.

We also emphasize below the transition involved in the addition/inclusion of the
integrals

f and -
Bj+1 Bj+1

and with reference to this we have illustrated in Figure 4 the (four) disks of radius
r and r/2 with centers at both §;(a;_1) = vk—1(a;—1) and Bj11(a;) = Yk—1(a;). The
details are as follows:



D, (Bj+1(ay))

Bilaj-1) = Bj-1(aj—1
(4j-1) = Bj-1(a5) B1(a5) = Bj-1(a)

Figure 4: Image curves determined by a subrectangle on the bottom edge of the partiation.

Starting with the disk D,(vx-1(a)) = D,(B1(a)) we have a primitive g; of f. Due
to the uniform continuity assertion and the fineness of the rectangular grid the entire
image of the subrectangle [a,ai] X [0—1,0%] under H lies in D, 5(B1(a)). We have
then, precisely as in (1)

/@ f—= , f=g1(Bu(@)) = 91(51(@) = [g1(Br (@) = g1(B1(a))]

= g1(Bi(ar)) — g1(Bi(ar)) (3)

since H(a,7) = fy(a) = B1(a).
We then consider the next difference of integrals

/Qf— 1

Much as before there exists a primitive g on D,.(f2(a1)) so that
[ [ 1= 05atan)) = aaBaon) ~ [ta02) ~ (Bt
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Noting that

~ A

Bolar) = Bi(ar) = ye—1(a)  and  Bay(ar) = Bi(ar) = y(ar)

the difference can be rewritten as
[ f— , f = 02(B2(a2)) — g2(Brlar)) — [92(B2(a2)) — g2(Bi(ar))].

Since f1(a1) = yx—1(ay) is also the center of the (next) disk D, (f2(a1)), the uniform
continuity assertion and the fineness of the grid also implies the entire image of the
first subrectangle [a, a;] X [0%—1, 03] under H lies also in D, /5(B2(a1)). In particular
this image

{H(t,7):a<t<ay, op1 <7 <0y}

lies in the intersection D, /2(51(a))ND,/2(f2(a1)) and also in the intersection D,.(51(a))N
D, (P2(a1)) where both g; and g are defined with g; = g5 = f. We conclude there
exists a constant ¢; € C for which g» = g1 + ¢; on this intersection. In particular, at
the points B (a1) = Ba(ay) and By (a;) = Bao(ar) we can write

G2(Br(ar)) = g1(Bi(ar)) + 1 and  go(Bi(ar)) = g1(Bi(ar)) + ¢

Substituting these values we find

A

/ f— s f 292(32(02)) —g1(Bri(ar)) —

— [92(B2(az)) — g1(Bi(ar)) — c1]
= 92(52(&2)) - 92(52(&2)) - [gl(Bl(al)) - gl(ﬁl(al))]-

From this, we may conclude much as in the initial case

i/jf_ i/ﬁjf = 92(P2(a2)) — g2(Ba(az)).

As before, the same approach applies to

/B f- g f = 095(Bs(as)) — gs(Bs(az)) — [g5(Bs(as)) — g3(Bs(az))]



using the primitive g3 on D,.(53(az2)) = D,(52(az)). We conclude

Z / ;- Z 7= as(Bstas) — gs(Bstos)

and
;/] f= ; //3j F = 9e(Be(b) — go(Be(D))

for £ =2,3,...,n. Taking (4) with ¢ = n gives

/ f_/ f=9n(0(b)) = gn(yr—1(b)) =0

H(b,7) = Bn(b) = Ye-1(b) = Y(b) = Bn(D).

since
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