Lang's Theorem

John McCuan

April 7, 2022

Consider a holomorphic function $f: \Omega \rightarrow \mathbb{C}$ defined on an open set $\Omega \subset \mathbb{C}$.
Theorem 1 If α_{0} and α_{1} are homotopic ${ }^{1}$ in Ω, then

$$
\int_{\alpha_{1}} f=\int_{\alpha_{0}} f
$$

Figure 1: Homotopic curves within a domain of holomorphicity.
I first read about this result in Serge Lang's book on complex analysis. I went through (and reconstructed) the proof in detail feeling that Lang, as is his usual practice, had given a nice suggestion of how the proof went without quite giving "adequate" detail. He certainly didn't give all the details. I remember feeling that my proof was rather

[^0]too complicated, partially simply because it was a kind of technically difficult result to prove. Now I see the result appears as Theorem 5.1 of Chapter 3 in Stein and Shakarchi's book on complex analysis. I also feel the proof given there is a little bit lacking, so I will try again to give a complete proof. Hopefully, I will be more satisfied than I was with my last attempt.

1 Set up

We have a homotopy $H:[a, b] \times[0,1] \rightarrow \Omega$ where we assume both paths α_{0} and α_{1} have domain the interval $[a, b]$ and the following hold:

$$
\begin{aligned}
H(t, 0) & \equiv \alpha_{0}(t) \\
H(t, 1) & \equiv \alpha_{1}(t) \\
H(a, \tau) & \equiv \alpha_{0}(a)=\alpha_{1}(a), \text { and } \\
H(b, \tau) & \equiv \alpha_{0}(b)=\alpha_{1}(b)
\end{aligned}
$$

We note also that

$$
K=H([a, b] \times[0,1])=\{H(t, \tau): a \leq t \leq b, 0 \leq \tau \leq 1\} \subset \subset \Omega
$$

where in this case " $\subset \subset$ " means "is a compact set compactly contained in" the open set Ω. Finally, the homotopy H is uniformly continuous on the compact set $K_{0}=$ $[a, b] \times[0,1]$. These are the basic ingredients in the proof, and they are relatively simple. The rest involves, to a certain extent, technicalities. Note that

$$
\operatorname{dist}(K, \partial \Omega)>0
$$

Thus, we can fix a positive number r with

$$
r<\operatorname{dist}(K, \partial \Omega)
$$

We will "grid up" or partition the rectangle K_{0} based on partitions

$$
\begin{aligned}
& a=a_{0}<a_{1}<a_{2}<\cdots<a_{n}=b \text { and } \\
& 0=\sigma_{9}<\sigma_{1}<\sigma_{2}<\cdots<\sigma_{m}=1
\end{aligned}
$$

with

$$
\begin{aligned}
a_{j}-a_{j-1} & =\frac{b-a}{n} \text { for } j=1,2, \ldots, n \text { and } \\
\sigma_{k}-\sigma_{k-1} & =\frac{1}{m} \text { for } k=1,2, \ldots, m .
\end{aligned}
$$

Figure 2: Partition of the rectangular domain of H (left) and a subrectangle along the bottom edge (right). The interval I_{j} is the domain of β_{j} and $\hat{\beta}_{j}$ which may be thought of as defined on the bottom and top of the subrectangle respectively.

The basic idea is the following: For each $k=0,1,2, \ldots, m$, we consider the path $\gamma_{k}:[a, b] \rightarrow \Omega$ by

$$
\gamma_{k}(t)=H\left(t, \sigma_{k}\right)
$$

Then we have $\gamma_{0}=\alpha_{0}$ and $\gamma_{m}=\alpha_{1}$. Notice that each γ_{k} for $0<k<m$ parameterizes a path connecting $\alpha_{0}(a)$ to $\alpha_{0}(b)$ in $K \subset \Omega$. We may consider the dashed curves in Figure 1 as illustrations of these paths. We will show (when we take the partition rectangles small enough) that

$$
\int_{\alpha_{0}} f=\int_{\gamma_{0}} f=\int_{\gamma_{1}} f=\int_{\gamma_{2}} f=\cdots=\int_{\gamma_{m}} f=\int_{\alpha_{1}} f .
$$

This will complete the proof.

2 Partition rectangles

By the uniform continuity of H, there is some $\delta>0$ for which

$$
\left|(t, \tau)-\left(t_{0}, \tau_{0}\right)\right|<\delta \quad \Longrightarrow \quad\left|H(t, \tau)-H\left(t_{0}, \tau_{0}\right)\right|<\frac{r}{2}
$$

for any points (t, τ) and $\left(t_{0}, \tau_{0}\right)$ in K_{0}. With this in mind, we choose m and n large enough so that

$$
\frac{b-a}{n}<\frac{\delta}{\sqrt{2}} \quad \text { and } \quad \frac{1}{m}<\frac{\delta}{\sqrt{2}} .
$$

This has the consequence that each subrectangle $\left[a_{j-1}, a_{j}\right] \times\left[\sigma_{k-1}, \sigma_{k}\right]$ has diameter less than δ for $j=1,2, \ldots, n$ and $k=1,2, \ldots, m$. Consequently, each of these subrectangles has image in the disk

$$
D_{r / 2}\left(p_{j k}\right) \quad \text { where } \quad p_{j k}=H\left(a_{j-1}, \sigma_{k-1}\right)
$$

is the image of the lower left corner.
This completes the basic set up. We need to use it to prove

$$
\int_{\gamma_{k-1}} f=\int_{\gamma_{k}} f \quad \text { for } k=1,2, \ldots, m
$$

3 Comparing integrals

This is where things get a bit complicated, and it's also where a main element of the proof arises. Let us set up that main element first:

Theorem 2 (Cauchy's theorem in a disk) If $D_{r}\left(z_{0}\right) \subset \subset \Omega$, then f has a primitive in $D_{r}\left(z_{0}\right)$, that is, there is a holomorphic function $g: D_{r}\left(z_{0}\right) \rightarrow \mathbb{C}$ such that $g^{\prime}=f$ on $D_{r}\left(z_{0}\right)$ and

$$
\int_{\beta} f=g(\beta(b))-g(\beta(a))
$$

for any path in $D_{r}\left(z_{0}\right)$ parameterized by β. In particular,

$$
\int_{\alpha} f=0
$$

for any loop in $D_{r}\left(z_{0}\right)$ parameterized by α.
We apply this in disks with the radius $r<\operatorname{dist}(K, \partial \Omega)$ mentioned above and centers determined by the partition values $a=a_{0}<a_{1}<a_{2}<\cdots<a_{n}=b$. More precisely, let's start with the path $\alpha_{0}:[a, b] \rightarrow \Omega$ for which

$$
\alpha_{0}(t)=H(t, 0)=H\left(t, \sigma_{0}\right) .
$$

Let us consider α_{0}, furthermore, as a concatenation of paths $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ with

$$
\beta_{j}: I_{j}=\left[a_{j-1}, a_{j}\right] \rightarrow \Omega \text { by } \beta_{j}(t)=\alpha_{0}(t)=H(t, 0) .
$$

We consider also the "next" path $\gamma_{1}:[a, b] \rightarrow \Omega$ by

$$
\gamma_{1}(t)=H\left(t, \sigma_{1}\right)
$$

as a concatenation of paths $\hat{\beta}_{1}, \hat{\beta}_{2}, \ldots, \hat{\beta}_{n}$ with

$$
\hat{\beta}_{j}: I_{j}=\left[a_{j-1}, a_{j}\right] \rightarrow \Omega \text { by } \hat{\beta}_{j}(t)=\gamma_{1}(t)=H\left(t, \sigma_{1}\right) .
$$

Figure 3: Image curves determined by a subrectangle on the bottom edge of the partiation. The image corresponding to the first subrectangle $\left[a, a_{1}\right] \times\left[0, \sigma_{1}\right]$ is illustrated on the left, and intermediate subrectangle as shown in Figure 2 in the middle, and the last subrectangle $\left[a_{n-1}, b\right] \times\left[0, \sigma_{1}\right]$ on the right. We have suppressed the index on $\hat{\beta}=\hat{\beta}_{j}$ in this illustration, taking $\hat{\beta}$ globally as another name for γ_{1}.

We begin by considering the lower left subrectangle $\left[a, a_{1}\right] \times\left[0, \sigma_{1}\right]$ whose image is illustrated on the left in Figure 3. Since this image lies entirely in $D_{r}\left(\alpha_{0}(a)\right)$ where there is a primitive g_{1} of f defined we can write

$$
\begin{align*}
\int_{\hat{\beta}_{1}} f-\int_{\beta_{1}} f & =g_{1}\left(\hat{\beta}\left(a_{1}\right)\right)-g_{1}(\hat{\beta}(a))-\left[g_{1}\left(\alpha_{0}\left(a_{1}\right)\right)-g_{1}\left(\alpha_{1}(a)\right)\right] \\
& =g_{1}\left(\hat{\beta}\left(a_{1}\right)\right)-g_{1}\left(\alpha_{0}\left(a_{1}\right)\right) \tag{1}
\end{align*}
$$

since at the left endpoints we have $H(a, \tau) \equiv \hat{\beta} a=\alpha_{0}(a)$.
We consider the next difference of integrals

$$
\int_{\hat{\beta}_{2}} f-\int_{\beta_{2}} f
$$

in reference to the middle illustration of Figure 3 where a primitive g_{2} is defined on $D_{r}\left(\alpha_{0}\left(a_{1}\right)\right)$. We find then

$$
\int_{\hat{\beta}_{2}} f-\int_{\beta_{2}} f=g_{2}\left(\hat{\beta}_{2}\left(a_{2}\right)\right)-g_{2}\left(\hat{\beta}_{2}\left(a_{1}\right)\right)-\left[g_{2}\left(\alpha_{0}\left(a_{2}\right)\right)-g_{2}\left(\alpha_{0}\left(a_{1}\right)\right)\right] .
$$

Since the primitives g_{1} and g_{2} are both defined on the intersection $D_{r}\left(\alpha_{0}(a)\right) \cap$ $D_{r}\left(\alpha_{0}\left(a_{1}\right)\right)$ contining both points $\hat{\beta}_{1}\left(a_{1}\right)=\hat{\beta}_{1}\left(a_{1}\right)$ and $\alpha_{0}\left(a_{1}\right)$ and satisfying there $g_{2}^{\prime}=g_{1}^{\prime}=f$, we conclude there is a constant $c_{1} \in \mathbb{C}$ such that $g_{2}=g_{1}+c+1$ on the common domain, and we find

$$
\begin{aligned}
\sum_{j=1}^{2} \int_{\hat{\beta}_{j}} f-\sum_{j=1}^{2} \int_{\beta_{j}} f= & g_{1}\left(\hat{\beta}_{1}\left(a_{1}\right)\right)-g_{1}\left(\alpha_{0}\left(a_{1}\right)\right)+g_{2}\left(\hat{\beta}_{2}\left(a_{2}\right)\right)-g_{1}\left(\hat{\beta}_{2}\left(a_{1}\right)\right)-c_{1} \\
& \quad-\left[g_{2}\left(\alpha_{0}\left(a_{2}\right)\right)-g_{1}\left(\alpha_{0}\left(a_{1}\right)\right)-c_{1}\right] \\
= & g_{2}\left(\hat{\beta}_{2}\left(a_{2}\right)\right)-g_{2}\left(\alpha_{0}\left(a_{2}\right)\right) .
\end{aligned}
$$

Taking the primitive g_{3} on $D_{r}\left(\alpha_{0}\left(a_{2}\right)\right)$ and repeating the same argument we obtian

$$
\int_{\hat{\beta}_{3}} f-\int_{\beta_{3}} f=g_{3}\left(\hat{\beta}_{3}\left(a_{3}\right)\right)-g_{3}\left(\hat{\beta}_{3}\left(a_{2}\right)\right)-\left[g_{3}\left(\alpha_{0}\left(a_{3}\right)\right)-g_{3}\left(\alpha_{0}\left(a_{2}\right)\right)\right] .
$$

Summing the differences again and taking account of the existence of a constant c_{2} for which $g_{3}=g_{2}+c_{2}$, we have

$$
\sum_{j=1}^{3} \int_{\hat{\beta}_{j}} f-\sum_{j=1}^{3} \int_{\beta_{j}} f=g_{3}\left(\hat{\beta}_{3}\left(a_{3}\right)\right)-g_{3}\left(\alpha_{0}\left(a_{3}\right)\right)
$$

This kind of expression persists until

$$
\begin{equation*}
\sum_{j=1}^{n} \int_{\hat{\beta}_{j}} f-\sum_{j=1}^{n} \int_{\beta_{j}} f=g_{n}\left(\hat{\beta}_{n}(b)\right)-g_{n}\left(\alpha_{0}(b)\right) \tag{2}
\end{equation*}
$$

At this point, we see as illustrated on the right in Figure 3 that $\hat{\beta}_{n}(b)=\alpha_{0}(b)$ so that the right side of (2) vanishes, and the left side is

$$
\int_{\gamma_{1}} f-\int_{\alpha_{0}} f=0
$$

Thus, we have completed the first step having verified

$$
\int_{\alpha_{0}} f=\int_{\gamma_{0}} f=\int_{\gamma_{1}} f
$$

Each step showing

$$
\int_{\gamma_{k}} f=\int_{\gamma_{k-1}} f \quad \text { for } \quad k=2,3, \ldots, n
$$

is substantially the same as what we have done above leading inductively to the conclusion

$$
\int_{\alpha_{0}} f=\int_{\gamma_{n}} f=\int_{\alpha_{1}} f
$$

as asserted in Lang's theorem. Partially for the sake of completeness and partially as a review of the argument presented above, we include the details in the general case below.

4 The general step

Here we attempt to show

$$
\int_{\gamma_{k}} f=\int_{\gamma_{k-1}} f
$$

The details differ from those of the first step above primarily in terms of notation and especially the subscripts associated with the concatenated curves β_{j} and $\hat{\beta}_{j}$ associated with γ_{k} and γ_{k+1} respectively. With appropriate changes of labeling, the illustrations of Figure 3 are still applicable. We have indicated the changes of labeling in Figure 4 with reference to the middle illustration of Figure 3. The modifications required to properly represent the beginning and ending illustrations on the left and right of Figure 3 in the general case are relatively easily obtained by drawing together/collapsing appropriate points.

We also emphasize below the transition involved in the addition/inclusion of the integrals

$$
\int_{\beta_{j+1}} f \quad \text { and } \quad \int_{\hat{\beta}_{j+1}} f
$$

and with reference to this we have illustrated in Figure 4 the (four) disks of radius r and $r / 2$ with centers at both $\beta_{j}\left(a_{j-1}\right)=\gamma_{k-1}\left(a_{j-1}\right)$ and $\beta_{j+1}\left(a_{j}\right)=\gamma_{k-1}\left(a_{j}\right)$. The details are as follows:

Figure 4: Image curves determined by a subrectangle on the bottom edge of the partiation.

Starting with the disk $D_{r}\left(\gamma_{k-1}(a)\right)=D_{r}\left(\beta_{1}(a)\right)$ we have a primitive g_{1} of f. Due to the uniform continuity assertion and the fineness of the rectangular grid the entire image of the subrectangle $\left[a, a_{1}\right] \times\left[\sigma_{k-1}, \sigma_{k}\right]$ under H lies in $D_{r / 2}\left(\beta_{1}(a)\right)$. We have then, precisely as in (1)

$$
\begin{align*}
\int_{\hat{\beta}_{1}} f-\int_{\beta_{1}} f & =g_{1}\left(\hat{\beta}_{1}\left(a_{1}\right)\right)-g_{1}\left(\hat{\beta}_{1}(a)\right)-\left[g_{1}\left(\beta_{1}\left(a_{1}\right)\right)-g_{1}\left(\beta_{1}(a)\right)\right] \\
& =g_{1}\left(\hat{\beta}_{1}\left(a_{1}\right)\right)-g_{1}\left(\beta_{1}\left(a_{1}\right)\right) \tag{3}
\end{align*}
$$

since $H(a, \tau) \equiv \hat{\beta}_{1}(a)=\beta_{1}(a)$.
We then consider the next difference of integrals

$$
\int_{\hat{\beta}_{2}} f-\int_{\beta_{2}} f
$$

Much as before there exists a primitive g_{2} on $D_{r}\left(\beta_{2}\left(a_{1}\right)\right)$ so that

$$
\int_{\hat{\beta}_{2}} f-\int_{\beta_{2}} f=g_{2}\left(\hat{\beta}_{2}\left(a_{2}\right)\right)-g_{2}\left(\hat{\beta}_{2}\left(a_{1}\right)\right)-\left[g_{2}\left(\beta_{2}\left(a_{2}\right)\right)-g_{2}\left(\beta_{2}\left(a_{1}\right)\right)\right] .
$$

Noting that

$$
\beta_{2}\left(a_{1}\right)=\beta_{1}\left(a_{1}\right)=\gamma_{k-1}\left(a_{1}\right) \quad \text { and } \quad \hat{\beta}_{2}\left(a_{1}\right)=\hat{\beta}_{1}\left(a_{1}\right)=\gamma_{k}\left(a_{1}\right)
$$

the difference can be rewritten as

$$
\int_{\hat{\beta}_{2}} f-\int_{\beta_{2}} f=g_{2}\left(\hat{\beta}_{2}\left(a_{2}\right)\right)-g_{2}\left(\hat{\beta}_{1}\left(a_{1}\right)\right)-\left[g_{2}\left(\beta_{2}\left(a_{2}\right)\right)-g_{2}\left(\beta_{1}\left(a_{1}\right)\right)\right] .
$$

Since $\beta_{1}\left(a_{1}\right)=\gamma_{k-1}\left(a_{1}\right)$ is also the center of the (next) disk $D_{r}\left(\beta_{2}\left(a_{1}\right)\right)$, the uniform continuity assertion and the fineness of the grid also implies the entire image of the first subrectangle $\left[a, a_{1}\right] \times\left[\sigma_{k-1}, \sigma_{k}\right]$ under H lies also in $D_{r / 2}\left(\beta_{2}\left(a_{1}\right)\right)$. In particular this image

$$
\left\{H(t, \tau): a \leq t \leq a_{1}, \sigma_{k-1} \leq \tau \leq \sigma_{k}\right\}
$$

lies in the intersection $D_{r / 2}\left(\beta_{1}(a)\right) \cap D_{r / 2}\left(\beta_{2}\left(a_{1}\right)\right)$ and also in the intersection $D_{r}\left(\beta_{1}(a)\right) \cap$ $D_{r}\left(\beta_{2}\left(a_{1}\right)\right)$ where both g_{1} and g_{2} are defined with $g_{1}^{\prime}=g_{2}^{\prime}=f$. We conclude there exists a constant $c_{1} \in \mathbb{C}$ for which $g_{2}=g_{1}+c_{1}$ on this intersection. In particular, at the points $\beta_{1}\left(a_{1}\right)=\beta_{2}\left(a_{1}\right)$ and $\hat{\beta}_{1}\left(a_{1}\right)=\hat{\beta}_{2}\left(a_{1}\right)$ we can write

$$
g_{2}\left(\beta_{1}\left(a_{1}\right)\right)=g_{1}\left(\beta_{1}\left(a_{1}\right)\right)+c_{1} \quad \text { and } \quad g_{2}\left(\hat{\beta}_{1}\left(a_{1}\right)\right)=g_{1}\left(\hat{\beta}_{1}\left(a_{1}\right)\right)+c_{1}
$$

Substituting these values we find

$$
\begin{aligned}
\int_{\hat{\beta}_{2}} f-\int_{\beta_{2}} f= & g_{2}\left(\hat{\beta}_{2}\left(a_{2}\right)\right)-g_{1}\left(\hat{\beta}_{1}\left(a_{1}\right)\right)-c_{1} \\
& \quad-\left[g_{2}\left(\beta_{2}\left(a_{2}\right)\right)-g_{1}\left(\beta_{1}\left(a_{1}\right)\right)-c_{1}\right] \\
= & g_{2}\left(\hat{\beta}_{2}\left(a_{2}\right)\right)-g_{2}\left(\beta_{2}\left(a_{2}\right)\right)-\left[g_{1}\left(\hat{\beta}_{1}\left(a_{1}\right)\right)-g_{1}\left(\beta_{1}\left(a_{1}\right)\right)\right] .
\end{aligned}
$$

From this, we may conclude much as in the initial case

$$
\sum_{j=1}^{2} \int_{\hat{\beta}_{j}} f-\sum_{j=1}^{2} \int_{\beta_{j}} f=g_{2}\left(\hat{\beta}_{2}\left(a_{2}\right)\right)-g_{2}\left(\beta_{2}\left(a_{2}\right)\right) .
$$

As before, the same approach applies to

$$
\int_{\hat{\beta}_{3}} f-\int_{\beta_{3}} f=g_{3}\left(\hat{\beta}_{3}\left(a_{3}\right)\right)-g_{3}\left(\hat{\beta}_{3}\left(a_{2}\right)\right)-\left[g_{3}\left(\beta_{3}\left(a_{3}\right)\right)-g_{3}\left(\beta_{3}\left(a_{2}\right)\right)\right]
$$

using the primitive g_{3} on $D_{r}\left(\beta_{3}\left(a_{2}\right)\right)=D_{r}\left(\beta_{2}\left(a_{2}\right)\right)$. We conclude

$$
\sum_{j=1}^{3} \int_{\hat{\beta}_{j}} f-\sum_{j=1}^{3} \int_{\beta_{j}} f=g_{3}\left(\hat{\beta}_{3}\left(a_{3}\right)\right)-g_{3}\left(\beta_{3}\left(a_{3}\right)\right)
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\ell} \int_{\hat{\beta}_{j}} f-\sum_{j=1}^{\ell} \int_{\beta_{j}} f=g_{\ell}\left(\hat{\beta}_{\ell}(b)\right)-g_{\ell}\left(\beta_{\ell}(b)\right) \tag{4}
\end{equation*}
$$

for $\ell=2,3, \ldots, n$. Taking (4) with $\ell=n$ gives

$$
\int_{\gamma_{k}} f-\int_{\gamma_{k-1}} f=g_{n}\left(\gamma_{k}(b)\right)-g_{n}\left(\gamma_{k-1}(b)\right)=0
$$

since

$$
H(b, \tau) \equiv \hat{\beta}_{n}(b)=\gamma_{k-1}(b)=\gamma_{k}(b)=\beta_{n}(b)
$$

[^0]: ${ }^{1}$ By homotopic here, we mean "fixed endpoint" homotopic in Ω; this will be reviewed/clarified below.

