Decay Comparison

John McCuan

April 23, 2022

In studying the Fourier transform

$$
\hat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{2 \pi i x \xi} d x
$$

two important classes of decaying functions are often considered. The first consists of function $f \in C^{0}(\mathbb{R} \rightarrow \mathbb{C})$ for which there is a constant $A>0$ with

$$
\begin{equation*}
|f(x)| \leq \frac{A}{1+x^{2}} \quad \text { for } \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

These are functions for which the Fourier transform is well defined as a uniformly continuous function $\hat{f}: \mathbb{R} \rightarrow \mathbb{C}$. Under certain additional conditions on f, it can also be shown that the Fourier transform \hat{f} satisfies a decay condition: There is some $B>0$

$$
\begin{equation*}
|\hat{f}(\xi)| \leq B e^{-2 \pi y|\xi|} \quad \text { for } \quad \xi \in \mathbb{R} \tag{2}
\end{equation*}
$$

for y in some interval $0<y<b$. Thus, these exponentially decaying functions constitute a second class of decaying functions which are of interest.

These two classes of decaying functions interact in the following way: Given a function $f \in C^{0}(\mathbb{R} \rightarrow \mathbb{C})$ satisfying the decay condition (1), we obtain a function $\hat{f} \in C^{0}(\mathbb{R} \rightarrow \mathbb{C})$ satisfying the decay condition (2). To this function \hat{f} we would like to apply the Fourier inversion formula

$$
g(x)=\int_{-\infty}^{\infty} \hat{f}(\xi) e^{2 \pi i \xi x} d \xi .
$$

In order for this formula to be well-defined and define a function $g \in C^{0}(\mathbb{R} \rightarrow \mathbb{C})$, which presumably under appropriate conditions should be the function f, we need \hat{f}
to satisfy a decay condition

$$
|\hat{f}(\xi)| \leq \frac{C}{1+\xi^{2}} \quad \text { for } \quad \xi \in \mathbb{R}
$$

where $C>0$ is some constant. Since the exponential decays faster than the reciprocal of the quadratic, it may be observed that for large $|\xi|$ in particular we should have

$$
e^{-2 \pi y|\xi|}<\frac{1}{1+\xi^{2}}
$$

In fact for $0<y<b$

$$
\lim _{|\xi| \rightarrow \infty} \frac{e^{2 \pi y|\xi|}}{1+\xi^{2}}=\lim _{|\xi| \rightarrow \infty} \frac{2 \pi y e^{2 \pi y|\xi|}}{2 \xi}=\lim _{|\xi| \rightarrow \infty} 2 \pi^{2} y^{2} e^{2 \pi y|\xi|}=+\infty .
$$

Thus, we may define $R:(0, \infty) \rightarrow[0, \infty)$ by

$$
R(y)=\min \{t \in[0, \infty): \phi(\xi, y) \leq \psi(\xi) \text { for } \xi \geq t\}
$$

where

$$
\phi(\xi)=\phi(\xi, y)=e^{-2 \pi y|\xi|} \quad \text { and } \quad \psi(\xi)=\frac{1}{1+\xi^{2}}
$$

It will be observed that the two functions ϕ and ψ are even, so only values corresponding to $\xi \geq 0$ need be considered, and we may also assume ϕ is differentiable at $\xi=0$ with derivative

$$
\phi^{\prime}(0)=\phi^{\prime}\left(0^{+}\right)=-2 \pi y<0 .
$$

Furthermore since,

$$
\psi^{\prime}(\xi)=-\frac{2 \xi}{\left(1+\xi^{2}\right)^{2}} \leq 0
$$

with equality only for $\xi=0$, there is some $t>0$ for which $\phi(\xi)<\psi(\xi)$ for $0<\xi<t$, and we may define $r:(0, \infty) \rightarrow(0, \infty]$ by

$$
r(y)=\sup \{t \in[0, \infty): \phi(\xi, y)<\psi(\xi) \text { for } 0<\xi<t\}>0
$$

There are several obvious questions to ask about the nature of the functions $r=r(y)$ and $R=R(y)$ as well as the relation between the functions ϕ and ψ. Two main assertions are the following:

Theorem 1 For $y>0$ large enough, $\phi(\xi, y)<\psi(\xi)$ for $\xi>0$. Consequently, $R(y)=0$ and $r(y)=+\infty$.

Theorem 2 For $y>0$ small enough there exist points $\xi>0$ with $\phi(\xi, y)>\psi(\xi)$. Consequently, $0<r(y)<R(y)$.

To see the first assertion, note that for $\xi \geq 0$

$$
\phi(\xi)=\frac{1}{\sum_{n=0}^{\infty} \frac{(2 \pi y \xi)^{n}}{n!}}<\frac{1}{1+\frac{(2 \pi y \xi)^{2}}{2}} \leq \frac{1}{1+\xi^{2}}=\psi(\xi) \quad \text { if } \quad y \geq \frac{1}{2 \pi} .
$$

For the second assertion, note that ψ is independent of y while $\phi=\phi(x, y)$ is decreasing in y with

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-2 \pi|\xi| e^{-2 \pi y|\xi|} \tag{3}
\end{equation*}
$$

with $\phi(\xi, y)$ converging uniformly to 1 on sets $K \subset \subset[0, \infty)$ as $y \searrow 0$. Specifically, we can say that for any $\epsilon>0$ and any $t>0$, there is some $\delta>0$ such that $0<y<\delta$ implies

$$
0<1-\phi(\xi, y)<\epsilon \quad \text { for } \quad 0<\xi<t
$$

Since $\psi(\xi)<1$ for every fixed $\xi>0$, there we will clearly have

$$
\phi(\xi, y)>1-\epsilon>\psi(\xi) \quad \text { for } \epsilon>0 \text { small enough and } \delta=\delta(\epsilon)>0 \text { small enough. }
$$

Having established Theorem 1 and Theorem 2, we can conclude that the set

$$
U=U(y)=\{\xi \in(0, \infty): \phi(\xi, y)>\psi(\xi)\}
$$

satisfies for some $y_{*}>0$ and some $y_{* *} \geq y_{*}$
(i) $U(y)=\phi$ for $y>y_{* *}$, and
(ii) $U(y) \neq \phi$ for $0<y<y_{*}$.

Furthermore, it follows from (3) that

$$
\begin{equation*}
U\left(y_{2}\right) \subset U\left(y_{1}\right) \quad \text { for } \quad 0<y_{1} \leq y_{2} \tag{4}
\end{equation*}
$$

We conclude that for some unique ${ }^{1}$

$$
y_{0}=\min \{y \in(0, \infty): U(y)=\phi\} \doteq 0.12808>0
$$

the following hold:

[^0](i) $U(y)=\phi$ for $y \geq y_{0}$,
(ii) $U(y) \neq \phi$ for $y<y_{0}$,
(iii) The set inclusion in (4) is strict unless $y_{1} \geq y_{0}$, and
(iv) When $y=y_{0}$ we have $U\left(y_{0}\right)=0$ so that
$$
\phi\left(\xi, y_{0}\right) \leq \psi(\xi) \quad \text { for } \quad \xi>0
$$
but there exists at least one point $\xi=\xi_{0}>0$ for which
$$
\phi\left(\xi_{0}, y_{0}\right)=\psi\left(\xi_{0}\right)
$$

At any such point $\xi_{0}>0$ there holds

$$
\phi^{\prime}\left(\xi_{0}\right)=\frac{\partial \phi}{\partial \xi}\left(\xi_{0}, y_{0}\right)=\psi^{\prime}\left(\xi_{0}\right)
$$

Lemma 1 There is precisely one positive $\xi_{0}=\xi_{0}\left(y_{0}\right) \doteq 1.98029>0$ satisfying the conditions described above with

$$
\begin{aligned}
\phi\left(\xi_{0}\right) & =\psi\left(\xi_{0}\right) \text { and } \\
\phi^{\prime}\left(\xi_{0}\right) & =\psi^{\prime}\left(\xi_{0}\right) .
\end{aligned}
$$

Proof: The prescribed system of equations, which we know corresponds to at least one pair $\left(\xi_{0}, y_{0}\right) \in(0, \infty) \times(0, \infty)$ requires

$$
\begin{equation*}
e^{-2 \pi y_{0} \xi_{0}}=\frac{1}{1+\xi_{0}^{2}} \quad \text { and } \quad-2 \pi y_{0} e^{-2 \pi y_{0} \xi_{0}}=-\frac{2 \xi_{0}}{\left(1+\xi_{0}^{2}\right)^{2}} \tag{5}
\end{equation*}
$$

Substituting the value of the exponential from the first equation into the second equation, we obtain a relation

$$
\begin{equation*}
-2 \pi y_{0} \frac{1}{1+\xi_{0}^{2}}=-\frac{2 \xi_{0}}{\left(1+\xi_{0}^{2}\right)^{2}} \quad \text { or } \quad \pi y_{0} \xi_{0}^{2}-\xi_{0}+\pi y_{0}=0 \tag{6}
\end{equation*}
$$

Thus, we have an equation which is quadratic in ξ_{0} and may be solved in the form

$$
\xi_{0}=\frac{1 \pm \sqrt{1-4 \pi^{2} y_{0}^{2}}}{2 \pi y_{0}}
$$

Returning to the first equation in (5) we compute

$$
\xi_{0}^{2}=\frac{1-2 \pi^{2} y_{0}^{2} \pm \sqrt{1-4 \pi^{2} y_{0}^{2}}}{2 \pi^{2} y_{0}^{2}} \quad \text { and } \quad 1+\xi_{0}^{2}=\frac{1 \pm \sqrt{1-4 \pi^{2} y_{0}^{2}}}{2 \pi^{2} y_{0}^{2}}
$$

so that the first equation may be written as

$$
\begin{equation*}
e^{-1 \mp \sqrt{1-4 \pi^{2} y_{0}^{2}}}=\frac{2 \pi^{2} y_{0}^{2}}{1 \pm \sqrt{1-4 \pi^{2} y_{0}^{2}}} \tag{7}
\end{equation*}
$$

Thus, ξ_{0} is eliminated from this equation. To simplify notation, let us write

$$
\alpha=\sqrt{1-4 \pi^{2} y_{0}^{2}} .
$$

Then

$$
2 \pi^{2} y_{0}^{2}=\frac{1-\alpha^{2}}{2}
$$

and (7) becomes

$$
\begin{equation*}
e^{-1 \mp \alpha}=\frac{1-\alpha^{2}}{2} \frac{1}{1 \pm \alpha} \tag{8}
\end{equation*}
$$

Notice that the choice of sign is coordinated, so this becomes two equations

$$
\begin{equation*}
e^{-1-\alpha}=\frac{1-\alpha}{2} \quad \text { and } \quad e^{-1+\alpha}=\frac{1+\alpha}{2} . \tag{9}
\end{equation*}
$$

The first of these (transcendental) equations,

$$
\frac{1}{e} e^{-\alpha}=-\frac{1}{2}(\alpha-1)
$$

is seen to have a unique positive root at a value $\alpha_{0} \doteq 0.5936$. This corresponds to the unique values

$$
y_{0}=\frac{1}{2 \pi} \sqrt{1-\alpha_{0}^{2}} \doteq 0.12808 \quad \text { and } \quad \xi_{0}=\frac{1+\sqrt{1-4 \pi^{2} y_{0}^{2}}}{2 \pi y_{0}} \doteq 1.98029
$$

posited by the lemma. The second equation in (9) has the unique solution $\alpha=1$ corresponding nominally to $y=0$ and $\xi=0$. This may be viewed as the degenerate case in which $\phi=\phi(\xi, 0) \equiv 1 \geq \psi(\xi)$ for all ξ, but indeed $\phi(0)=1=\psi(0)$ and $\phi^{\prime}(0)=0=\psi^{\prime}(0)$. At any rate, this does not lead to positive values for ξ_{0} and y_{0} as shown to exist based on our analysis of the sets $U(y)$ for $y>0$.

Since we have characterized all possible values of $\xi_{0}>0$ and $y_{0}>0$ and found precisely one we have established the assertion of Lemma 1 .

We have shown that for $y \geq y_{0}$ where

$$
y_{0}=\frac{1}{2 \pi} \sqrt{1-\alpha_{0}^{2}} \doteq 0.12808
$$

and $\alpha_{0} \doteq 0.5936$ is the unique positive solution of

$$
\frac{1}{e} e^{-\alpha_{0}}=-\frac{1}{2}\left(\alpha_{0}-1\right)
$$

there holds

$$
\begin{equation*}
e^{-2 \pi y|\xi|} \leq \frac{1}{a+\xi^{2}} \tag{10}
\end{equation*}
$$

Furthermore, we know equality holds in (10) for $\xi=0$, and we have shown that aside from the equality at $\xi=0$ the inequality is always strict unless $y=y_{0}$ and

$$
\xi_{0}=\frac{1+\sqrt{1-4 \pi^{2} y_{0}^{2}}}{2 \pi y_{0}} \doteq 1.98029
$$

We recall a result from our consideration of the Fourier transform (or Stein and Shakarchi's Theorem 2.1 of Chapter 4):

Lemma 2 (Theorem 2.1 in Stein and Shakarchi) For $f: \Omega \rightarrow \mathbb{C}$ holomorphic on the strip

$$
\Omega=\{x+i y \in \mathbb{C}: x \in \mathbb{R} \text { and } 0<y<b\}
$$

and satisfying for some $A>0$ the uniform decay estimate

$$
\begin{equation*}
|f(x+i y)| \leq \frac{A}{1+x^{2}} \quad \text { for } \quad x, y \in \mathbb{R} \quad \text { with } \quad x+i y \in \Omega \tag{11}
\end{equation*}
$$

we havefor each fixed y with $0 \leq y<b$

$$
\begin{equation*}
|\hat{f}(\xi)| \leq \pi A e^{-2 \pi y|\xi|} \quad \text { for } \quad \xi \in \mathbb{R} \tag{12}
\end{equation*}
$$

We may now state a corollary of this result using (10):

Corollary 3 For $f: \Omega \rightarrow \mathbb{C}$ holomorphic on the strip

$$
\Omega=\{x+i y \in \mathbb{C}: x \in \mathbb{R} \text { and } 0<y<b\}
$$

for some $b \geq y_{0}$ and satisfying for some $A>0$ the uniform decay estimate

$$
|f(x+i y)| \leq \frac{A}{1+x^{2}} \quad \text { for } \quad x, y \in \mathbb{R} \quad \text { with } \quad x+i y \in \Omega
$$

we have

$$
|\hat{f}(\xi)| \leq \frac{\pi A}{1+\xi^{2}} \quad \text { for } \quad \xi \in \mathbb{R}
$$

It remains to address the situation when $0<y<y_{0}$. In this case, the set

$$
U(y)=\{\xi \in(0, \infty): \phi(\xi)>\psi(\xi)\}
$$

is nonempty but satisfies $U=U(y) \subset \subset(0, \infty)$. We recall, however, that $2 \pi y_{0}<1$. This means that for $0<y<y_{0}$ we have

$$
\phi(\xi)=\frac{1}{\sum_{n=0}^{\infty} \frac{(2 \pi y \xi)^{n}}{n!}}<\frac{1}{1+\frac{(2 \pi y \xi)^{2}}{2}} \leq \frac{1}{2 \pi y+2 \pi y \xi^{2}}=\frac{1}{2 \pi y} \psi(\xi)
$$

Therefore, for y fixed with $0<y<y_{0}$, the set

$$
\left\{\beta>0: e^{-2 \pi y|\xi|} \leq \frac{\beta}{1+\xi^{2}} \text { for } \xi \in \mathbb{R}\right\}
$$

is nonempty. Also, note that (trivially)

$$
\frac{\partial}{\partial \beta} \frac{\beta}{1+\xi^{2}}=\frac{1}{1+\xi^{2}}>0
$$

We conclude there is a unique function $B:\left(0, y_{0}\right) \rightarrow(1, \infty)$ given by

$$
B(y)=\min \left\{\beta>1: e^{-2 \pi y|\xi|} \leq \frac{\beta}{1+\xi^{2}} \text { for } \xi \in \mathbb{R}\right\}
$$

giving the least value $B=B(y)$ for which

$$
\begin{equation*}
e^{-2 \pi y|\xi|} \leq \frac{B}{1+\xi^{2}} \quad \text { for } \quad \xi \in \mathbb{R} \tag{13}
\end{equation*}
$$

In order to show equality holds in (13) with $B=B(y)$ for precisely one value $\xi=$ $\eta(y)>0$ we prove a kind of second version of Lemma 1 . It is striking that we also obtain completely explicit expressions for $B(y)$ and $\eta(y)$.

Lemma 4 For $0<y<y_{0}$, there is a unique $B=B(y)>1$ and a unique $\xi=\eta(y)>$ 0 giving a solution of the (transcendental) system

$$
\begin{align*}
\phi(\xi)=\phi(y, \xi)=e^{-2 \pi y \xi} & =\frac{B}{1+\xi^{2}}=B \psi(\xi) \tag{14}\\
\phi^{\prime}(\xi)=\phi_{\xi}(y, \xi)=-2 \pi y e^{-2 \pi y \xi} & =-\frac{2 B \xi}{\left(1+\xi^{2}\right)^{2}}=B \psi^{\prime}(\xi) . \tag{15}
\end{align*}
$$

In fact,

$$
\begin{equation*}
\eta=\eta(y)=\frac{1}{\pi y} \sqrt{\frac{1-2 \pi^{2} y^{2}+\sqrt{1-4 \pi^{2} y^{2}}}{2}} \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
B(y) & =\min \left\{\beta>1: e^{-2 \pi y|\xi|} \leq \frac{\beta}{1+\xi^{2}} \text { for } \xi \in \mathbb{R}\right\} \\
& =\left(1+\eta^{2}\right) e^{-2 \pi y \eta} \\
& =\frac{1+\sqrt{1-4 \pi^{2} y^{2}}}{2 \pi^{2} y^{2}} e^{-1-\sqrt{1-4 \pi^{2} y^{2}}} \tag{17}
\end{align*}
$$

Proof: We know the system (14-15) holds for at least one value $\xi=\eta$ for

$$
B=B(y)=\min \left\{\beta>1: e^{-2 \pi y|\xi|} \leq \frac{\beta}{1+\xi^{2}} \text { for } \xi \in \mathbb{R}\right\}
$$

Substituting as in the proof of Lemma 1, we have

$$
-2 \pi y \frac{B}{1+\eta^{2}}=-\frac{2 B \eta}{\left(1+\eta^{2}\right)^{2}}
$$

or

$$
\pi y=\frac{\eta}{1+\eta^{2}}
$$

This equation is very similar to the equation in (6) except that y is now a given value instead of an unknown. Notice also that B, and our particular choice of B, does not play an essential role; we only need the existence of some B that corresponds to a solution. As in (6) we get a quadratic equation

$$
p i y \eta^{2}-\eta+\pi y=0
$$

with solution(s)

$$
\eta=\frac{1 \pm \sqrt{1-4 \pi^{2} y^{2}}}{2 \pi y}
$$

Recognizing that at least one of these numbers (and possibly both) should yield a solution, we compute

$$
\eta^{2}=\frac{1-2 \pi^{2} y^{2} \pm \sqrt{1-4 \pi^{2} y^{2}}}{2 \pi^{2} y^{2}}
$$

and

$$
1+\eta^{2}=\frac{1 \pm \sqrt{1-4 \pi^{2} y^{2}}}{2 \pi^{2} y^{2}}=2 \frac{1 \pm \alpha}{1-\alpha^{2}}
$$

where $\alpha=\sqrt{1-4 \pi^{2} y^{2}}$. As before $2 \pi^{2} y^{2}=\left(1-\alpha^{2}\right) / 2$ and equation (14) becomes

$$
e^{-1 \mp \alpha}=\frac{B}{2(1 \pm \alpha)}\left(1-\alpha^{2}\right) .
$$

As in the proof of Lemma 1 we consider each choice of coordinated sign separately: Choosing the top sign gives

$$
\begin{equation*}
\frac{1}{e} e^{-\alpha}=\frac{B}{2}(1-\alpha) . \tag{18}
\end{equation*}
$$

The function $g(\alpha)=e^{-\alpha} / e$ on the left is decreasing and convex for $\alpha>0$ with

$$
g(0)=\frac{1}{e}<\frac{1}{2} \quad \text { and } \quad \lim _{\alpha \nearrow \infty} g(\alpha)=0 .
$$

The function $h(\alpha)=b(1-\alpha) / 2$ is decreasing and affine with

$$
h(0)=\frac{B}{2}>\frac{1}{2} .
$$

Therefore, there is a unique $\alpha>0$ determined by (18), and because $g(\alpha)>0$, it must be the case that $0<\alpha<1$. This value corresponds to the unique solution giving (16) in the statement of the lemma.

The alternative (bottom) choice of sign gives

$$
\begin{equation*}
\frac{1}{e} e^{\alpha}=\frac{B}{2}(1+\alpha) . \tag{19}
\end{equation*}
$$

The function $g(\alpha)=e^{\alpha} / e$ on the left is increasing and convex for $\alpha>0$ with

$$
g(0)=\frac{1}{e}<\frac{1}{2}
$$

while $h(\alpha)=b(1+\alpha) / 2$ is increasing and affine with

$$
h(0)=\frac{B}{2}>\frac{1}{2} .
$$

Again, there is a unique solution $\alpha>0$ of (19). In this case, however, $g(1)=1<$ $B=h(1)$. Therefore, $\alpha>1$, and this value is not

$$
\alpha=\sqrt{1-4 \pi^{2} y^{2}}<1
$$

The solution here is essentially extraneous. We have established the existence and uniqueness, and the value of $B=B(y)$ given in the statement of the lemma can be computed from (14).

There are a number of additional aspects of the comparison between

$$
\phi(\xi, y)=e^{-2 \pi y|\xi|} \quad \text { and } \quad \psi(\xi)=\frac{1}{1+\xi^{2}}
$$

which would be interesting to explore. The regularity and the monotonicity of the functions R and r appearing in Theorems 1 and 2 would be nice to understand. Can these functions be expressed in terms of solutions of transcendental equations (or explicitly)? It would also be nice to know the sets

$$
U=U(y)=\{\xi \in(0, \infty): \phi(\xi, y)>\psi(\xi)\}
$$

with the nesting property established in (4) are intervals (when they are nonempty). I guess I will leave these considerations to someone else; I may have already found out more about this topic that anyone wants to know.

[^0]: ${ }^{1}$ The transcendental equation leading to the numerical approximation of this value will be addressed below. See Lemma 1 and its proof.

